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ABSTRACT

g

"Two-dimensional numerical simulation is a necessary tool for modern
semiconductor device design. Analytical models and judicious application
of one-dimensional simulation cannot accurately represent the highly two-
dimensional impurity profiles and structures of VLSI devices. Morcover, the
allowable device structures and bins conditions of existing twn-dimensional
simulation programs are too restrictive to provide the necessary design infor-
mation.

A two-dimensional numerical simulation program, PISCLES, has been
written in order to study various aspects of device simulation. The program
uses vectorized LU decomposition to alternately =olve Polszon's cquation and
the electron current continuity equation (Gummels method). The program is
extremely flexible and uscful in evaluating two-dimensionul simulation con-
cerns such as grid allocation, boundary conditions, conversence characteris-
tics and physical models.

A

The discretizatiod g';rid is analyzed in comparisons of rectangular and
triangular grids and in the allocation of grid points within critical regions
of the device. A triangular grid achieved by Jdistorting a rectangular grid
is advocated as a reasonable compromise between the flexibility of general
triangular grids and the regularity and matrix solution method compatability
of rectangular grids. A finite difference discretization of Poisson’s equation
and the current continuity equation on a triangular grid is presented.

A varicty of methods for reducing the simulation time arc explored. The
nested dissection grid renumbering scheme is shown to provide a significant

storage and operation count reduction for larger grids with a slicht penalty

in vector operation cfliciency. Techniques [or accelerating the convergence of
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the alternating method are presented which together reduce solution times
by a factor of four for devices biased above threshold. These methods
involve computation of an improved initial guess, climination of cxcessive
solutions of Poisson’s equation, overrelaxation of the potential updutes and
reduction of the Poisson lincarization term. Even with these improvemnents,
however, simulations above threshold still require about four times as long
as subthreshold simulations. This slow convergence appears to be correlated
with slow oscillations of the first harmonic in spatial frequency of the su;facc
potential in the inverted channel between source and drain.

Two application examples demonstrate the utility of the PISCES pro-
gram and two-dimensional numerical simulation in general. Simulation of
an implanted channel MOSTET reveals a 30 fold incrcase in punchthrough
current with a 12% increase in source drain junction depth. Picld depen-
dent mobility is investigated with the implementation of a distance-from-the-

surface mobility model.
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Chapter 1

INTRODUCTION

As device geometries shrink in the pursuit of Very Large Scale Integration
VLSI), two-dimensional numerical simulation of devices gains in impor-
’ I
tance. One-dimcusional approximations which are valid for low ficlds and
large lateral dimensions with respect to vertical dunensions no longer apply.
8 p g pplty
Extensions th the one-dimensional theory can be uselul but cannot accurately

account for the highly two-dimensional structure of modern devices.

1.1 Perspective

In 1970 gate lengths of 7 microns were typical for production LS eir-
cuits [1.1]. By 1980 the sate length had been reduced to 2 microns and cur-
rent contracts for the US Government’s Very tHigh Speed Integrated Cirenits
(VIISIC) program [1.2] call for production of 0.5 micron devices by 19N,
The constant reduction of device dimensions seen over the Tast 20 vears is
expected to continue to at least 19920, As the deviee lateral dimensions have
come down it has become necessary to alter other structural and operational
parameters in order to maintain desirabie operating characteristies. Deviee
sealing theory [1.3] deseribes how to optimally adj.st device vertieal dinmen-
sions, voltage levels, and doping concentrations as a function ol Lateral dimen-
stons to minimize the short channel effects caused by strong two-dimenstonal
ficlds. Practieal considerations, however, including fubrication constraints

and logie level notse immunity have caused designers to sub-optimally seale

these parameters thus retaining some short-channel hehavior.




Iigure 1.1 shows a comparison of the equipotential contours of two
metal-oxide-semiconductor field effect transistors (MOSIFET’s) which are
identical except for their gate length. IFor Figure 1.1a, the channel length
(metallurgical junction spacing) is 5 microns while for Figure 1.1h it is 2
microns. Note that in both cases, as the cquipotential lines near the surface
curve to follow the junction boundaries, they pull away from the surface in-
dicating higher surface potentials near the junctions and an incercase in con-
trol over these potentials by the source and drain and a reduction in control
by the gate. For the long-channel device of (a), these edge effects are i =mall
percentage of the total channel length and thus have limited influence on
device characteristics. In the short-channel device, however, the edge effeets
extend throughout alarge percentage of the channel length and have o strong
influence on the device characteristies. One result of this is a lower threshold
voltage than that predicted by theory since the surface potential iz higher
for a given gate bias, Another result is an increased sensitivity of the output
current to the drain bias (drain conductance) duce to the contrel exerted by
the drain on the surface potential in the channel.

Such effeets are clearly the result of the two-dimensional structure, and
attempls have been nnde to model these effeets analytically. Seme success
has been obtained by Yau [1.4] and extended by others {1.5] to model short-
channel effects by using a charge sharing theory. The bhasie features of this
model are shown in IFigure 1.2, The charge controlled by the gate is assumed
to be contained within the trapezoidal region immediately beneath the gate
with the remaining charge controlled by the source and drain respectively.
IFurther, the junctions and depletion edge boundaries are assumed to be

cylindrical.

Ty
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Fig. 1.1. A comparizon of short- and long-channel MOSFET equipoteatial
lines. .

This model roughly approximates the threshold shifts seen o~ the chan- '
nel length is reduced in devices fabricated using conventional long-channel
techniques; however, as device structures are optimized for short-channel
performance, the assumptions made (e.g. cylindrieal junctions) no longer |

apply and the model is invalidated. Thuas with analytical modeling. if all of
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[Fig. 1.2, Charge sharing model of Yau.

the assumptions made are valid, then the proper results will be obtained;
however, if the assumptions break down then the results will be tnvalid. The
principal advantage of numerical simulation of semiconductor devices ix that
few a:.umptions need to be made. If there are desion errors which vesult
in excessively large clectrie fields or alternate conduction paths, for example,
| the simulation will accurately reveal the existence of the:e effeets even though
they had not been expected. The principal disadvantages of numerieal simula-
tion uare that there are no simple equations to desceribe deviee behavior, it is
not always obvious how to interpret the results, and a significant amount of
‘ computation is required.

Of course, attempts can and will be made o model new =tructures,

Analytical models provide insight into the interplay of deviee parameters

which can be useful to device designers and users: howeyver, the modeling job




becomes increasingly diflicult and the assumptions become more restrictive as

device structures shrink in size and become more complex. In fact, numerical
simulation is inevitably used in arriving at or verifying analytical models.

As an example of the complexity of modern device structures, Figure 1.3
shows two exotic field effect devices: a static induction transistor [1.6] and
a taper-isolated dynamic-gain RAN cell [1.7]. The operating characteristics
of these devices result primarily from the two-dimensional nature of their
tmpurity profiles and electric fields. The creation of analytical modcls for
these devices, applicable throughout their entire operating reeime, wonld
clearly be a difficult task.

For some applications, {e.g. circuit simulation programs<) empirical rela-
tions suflice for explaining device behavior. This form of modeling ~ulfors
from several drawbacks. First. the model parameters often hove no phivsical
basis and muay only be extracted fromn measured data. Second. since cnch
region of device operation requires o different empirieal relation, it is difficult
i not impo=sible to mateh the device characteristios in the tran-ition from one
region to another. Going a step further, one reeent cireuit simulation pro-
gram uses tables instead of closed form expressions for deviee characteristies
[1.8]. Much physical basis is lost in thisx method exeept in the determination
of how to parameterize the tables. In either case, closed-form expressions
or lables; numerical simnlation can be used 1o generate the required deviee
characteristics. Numerieal simulation also provides asignificant opportunity
to study the ellects of deviee technolopy variables on cirenit performance.
Furthermore, the use of process simulation to generate the device protiles

provides the opportuniiy to direetly study the link between fabrication steps

and cireuit performance.
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Two-dimensional numerical simulation of semiconductor deviees 1s n

natoral and necesarn extension of current trends in computer aided desian

(CAD) as aclink between proccss simulators such as SUPRIN (1.0 and eircuit

simulators such as SPICE {1.10]. Figure 1.4 shows how deviee simulation 1
fit= info a total simulation philosophy. The actual fabrication of deviees js '
preceded by the processing of test structures and messurement ol the one. |
dimen-ional impurity profiles, Differences from desived profile valies are
6
i




fed back into the process specifications and the sequence is repeated until
satisfactory agreement is obtained. The device lot wafers are then processzed
and electrical measurenments are made from which two-dimensional profile
information may be inferred. Electrical measurements are also made to
determine device and circuit characteristies. FFeedback is provided at cach
level to allow optimization of the process.

The principal savings in cost and time for simulation versus actual
fabrication and testing of devices comes in process simulation. Typically,
one simulation of a process using SUPREN would take only a few minutes,
costing tens-ol-dollars on a mair “ame computer. Actual fabrication would
typically take several weeks and co-t thousands of dollars. Obviously. the
savings re-ulting from the use of ~immlation are substantial. The situation
i= reversed somewhat for device and circuit simuletion versu- device and eir-
cuit measurements, Deviee and cireuit eleetrieal mensurement < are relatively
quick and inexpensive tas s while the cost of ecch simulation i+ roughly com-
parable to that for process simulation. Lven zo, deviee simulation offers o
tremendous advantage over device measurement since one necd noi fubricate
the device first. Moreover, simualation provides o detailed twe-dimen-ional
view of the physics which deviee messurements cannot provide,

Another advantace of siimulation les in the fuct that it s often difficult 10
accurately measure two-dimensional deviee struetures {111, When attempt-
ing to analyze or improve deviee performance, one would like to measure
device profiles. In eases where accurate meazurements are not possible,
sitmulation allows the engineer the opportunity to manipulate the simulated
profiles and observe the effeets on deviee charoeterizties, thus inferring the

actual profile shapes [1.12].

Iinally, simulation provides a much greater insight into deviee behavior
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Fig. 1.4. The parallel paths of simulation versus actual wafer processing.
Feedback is provided at each level by the comparison of mea-ured
or simulited results on profiles or operating characterisiice. ngninst
the desived values.

than can be obtained in any other way. In the case of unwanted punchihrough

currents in MOSPFETs [1.13], for example, one can both determine terminal
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conditions of punchthrough and spatially identify the point of punchthrough.

[Ffurther, a proposed solution to the problem may be simulated and its success

or fatlure determined.

1.2 History

The history of numerical simulation of semiconductor devices hegins
with the work of Gumnumne! [1.14] in 1961 on the one-dimensional steads-=tate
analyvsis of bipolar transistors. lis method provided a two-carrier =olution
meaning that the continuity and transport equations were sati<fied for hoth
holes and clectrons. The prineipal contribution of his carly worlt was the use
of axequential iteration scheme for obtaining a consistent <olution to the three
sets of eqguations: Poisson’s equation, and the hole and eleetron continuity
cquations.  In his mecthod, one first solves Poisson’s equation folloned by
the electron and hole continuity cquations in suceession. The cyele is then
repeated. The sofution of cach equation individually in this manner reguires
much less work than solving all three simultancously. Generally, however, the
convergence 15 not as fast ax the quadratic convergence which can be obitoined
for a strmultancous solution {1.15]. Nevertheless the amount of work saved
in cach iteration pencvally compensates for the slower convergence. These
points will be examined in greater detail in Chapter 4.

De Nari analyzed the p-n junction in one dimension in 1968 {1167 and
enhanced the numerieal analysis capabilities to include transient conditions
[1.17]. Tn 1969 Scharfetter and Gummel published their work on the transient
analysis of a Read diode oscillator [118]. Thiz paper provided the second
major advance in numerical algorithms with the introduction of a earrier

transport cequation deseretization scheme which allowed larger grid <pacing




and thus fewer variables. This method will be described further in Chapter
3. The advent of two-dimensional simulation in 1969 lowered interest in one-
dimensional simulation, thus slowing its development and focusing its ap-
plication to bipolar devices. The most significant works to follow emphasized
specific deviee analyses obtained from one-dimensional simulations and the
inclusion of higher order physical phenomena such as band gap narrowing and
mobility variations [1.19, 1.20]. Sclected works in one-dimensional analysis
include Gokhale in 1970 [1.21]; Hachtel, et al. in 1972 {1.227; and D'Avanvo
in 1979 [1.23].

Two-dimensional simulation appeared in the literature in 1969 with tle
publication of works by Kennedy and O'Brien (1.21 26" on the simulition of
JIETs and by Slothoom [1.27, 1.28] on bipolar tran~i-tors. The advent of
short channel FETs in this period was the driving factor for two-dimen fonal
simulation and almost all subseguent work was aimed at 1GHET=0 Reiser
introduced two-dimensional transient anlysis in 1970 [1.29 31 and Mock
prescnted his streawm function formulation of the carrier transport cquations
in 1973 [1.3-1].

The next significant development came in 1973 with the first publication
of finite element analysis by Tachtel [1.35, 1.36] followed in 1971 by Barnes
and Lomax [1.37, 1.38] and Buturla and Cottrell 1139 411 All previous
work had been based on finite-dilference diveretization ~chemes and their o~
sociated rectangular grids. The use of linite elements poovided improvements
over finite-difference discretization with the ability to model non-rectanaular
structures and a more cflictent. use of grid. Althourhi rectangnlar prids do
not prohibit the simulation ol non-rectangular structures [112], the numert-
cal techniques for accomodating these structures had not been implemented.

Henee, previous work had been restricted to rectaneular structures. These
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topics will be discussed further in Chapter 2.

Developments since 1975 have focused on decreasing program size and
solution time while increasing the accuracy of the solution in terms of both
the numerical algorithms used and the models of the device physics. Another
aim has been the development of “friendly” user interfaces for the simulation
programs in order to make the simulation technology more available to device
designers [1.43]. This progression from use of simulation as a laboratory
tool in developing semiconductor device theory to application in produc-
tion facilitics for optimizing device structures is a field still in its infaney.
Nonetheless, its application holds great promise in providing the increased
productivity needed for VLSI design.

Several programs have recently become widely available. NIZMOS, based
on the early work of Kennedy [1.2:4}; CADDIET, based on Mock™s work [1.11];
and MINIMOS, [1.45]) all provide steady-state solutions for essentially ree-
tangular FET structures. TWIST [1.46] and GENMINT [1.42] <olve only for
the deviee potentials but are quite uscful for simulation of sub-threshold
and punchthrough characteristics as well as deviee breakdown characteris-
tics. TWIST is limited to rectanzular geometries while GENINT allows non-
rectangular structures.

Currently, work is in progress on two fronts which will provide valuable
aid to the device designer -the development of three-dimensional simula-
tion and the the introduction of simplified fast two-dimensional stmulation.
Several rescarchers have published preliminary work on three-dimensional
simulation [1.47-49]. Most notable of these is that of Buturla and Cottrell
with their extension of the two-dimensional simulation program FIELDAY
[1.50] to three dimensions. These simulitions have shown that there are

characteristics of short and narrow semiconductor devices which can be ae-
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curately simulated only in three dimensions. These programs, however, must
run on large mainframe computers and consume considerable computer time;
thus, they are currently of limited practical value tc device designers.

At the other end of the spectrum is the simplified two-dimensional
program of Oh, SDVICE [1.51]. This program provides a very fast solu-
tion to the two-dimensional FET transient problem and uses very little
computer memory. It is limited in the device geometries and operating
regions which it handles and the accuracy of its solutions require further
verification, [owever, this program solves a particular type of problem ex-

tremely efficiently.

1.3 PISCES

A two-dimensional numerical simulation program has been written for
the purpose of investigating grid and boundary condition sensitivites; con-
vergence limitations, device physies models, and to compare other numeri-
cal simulation programs. PISCLIS (Poisson and Single-carrier Continuity
Equation Solver) solves the Poisson equation and the steady-state electron
continuity equation using the alternating method (Gummel’s algorithm) on an
HP-1000F minicomputer. The program uses a finite difference diseretization
on an irregular (riangular grid and thus casily handles non-planar surfaces
and interfaces.

The program was written for use on field effect transistors where a
single-carrier solution is suflicient. Field effect transistors are majority carrier
devices and very little error is introduced by ignoring the minority carriers
except in extreme biasing conditions such as avalanche breakdown. By solv-

ing only the cleetron conlinuity equation, time is saved sinee the hole con-

12




tinuity equation does not have to be solved, and slightly faster convergence
is obtained.

The equations solved are:

Poisson v ((.61/)) =n—-p—-N
Continuity V. j,‘ = q(R, — G,)
Transport .—:L = —qynned} + ql),ﬁn
Boltzmann n = n,ed¥-®)/kT

where ¢ is the permittivity, 1 is the clectrie potential, 2 and p are the free
clectron and hole concentrations, [V is the net iouized impurity concentration,
—

J. is the electron current density, 12, and G,, are the clectron recombination
and generation rates, 4, is the clectron mobility. D, is the clectron diffu<ion
constant, n, is the intrinsic carrier concenlration, ¢,, and ¢, are the electron
and hole quasi-T'ermi levels; and £7/¢ is the thermal voltage.

The extension of finite difference methods to triangular grids is 2 novel
approach for semiconductor deviee simulation although it has been applied
in other fields [L52]. Trregntar triangular grids possess desdrable features
for semiconductor simulation including the ability to conform to irregular
shapes and the capacity for local grid refinement without induecing excessive
grid elsewhere. These same advantages are the driving [actors which have
resulted in the development of finite clement siimulators.

The PISCES program also contains user oriented features which inerease
its utility. Using the input parser and graphies interface routines developed
for the GEEMINI program, PISCES provides a flexible, friendly user interfacee
for botk input and output. Two examples of contour plot output from

PISCIES are shown in Ficure L5, Equipotential contours are shown lor n
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typical short-channel MOSFET and for a MESIFET. A complete PISCIES

simnlation example is provided in Appendix A.

1.4 Overview

The objective of this work is to aid the development of device simulation
by examining various aspects of the problem. A versatile two-dimensional
simulation pregram has been developed in the course of this study. The ver-
satil'ty is achieved through choice of grid and discretization schemes which
allow simulation of maodern, highly two-dimensional, non-planar semicondue-

i tor devices on a minicomputer. The use of a minimum number of grid points

and application of several novel convergence acceleration techniques reduces
solution times to practical limits,

T'he effeets of grid on two-dimenstonal numerieal simulation of =cmicon-
ducter devices are discussed in Chapter 2. The various types of erid are
presented and their applicabilily to device struetures and sotution methods
are considered. The tradeoff of number of grid points versus complesity
of rolution method is addressed. Requirements for high grid density in lo-
calized regions are also considered. The chapter concludes with a diveus-
sion of boundary condition sensitivites and the requirements for aceurate
discretization of impurity prolites including lateral extensions of source and
drain regions in the simulation window.

Finite difference diserctization on an irregular triangular grid is the sub-
jeet of Chapter 3. The diseretization and lincarization of Poisson’s equation
with carrier statistics constraints is derived including the special ease of dis-
cretization when the grid contains obtuse triangles. Discretization of the

! clectron continuity cquation is also described. The non-existence of an ex-
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potential lines for (a) MOSFET nd (b) MESEIT.
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act two-dimensional equivalent to the one-dimensional Gummel-Scharfetter
scheme is proved and a quasi-two-dimensional discretization is described.

Chapter 4 addresses methods for solving the discretized equations.
Techniques such as the Fast Fourier Transform, the conjugate gradient
method, and relaxation methods are discussed in connection with solving the
matrix equations resulting from the discretization of Poisson’s cquation or
the continuity equation. Methods for reducing the amount of required com-
putation by renumbering the grid arc examined. The various ways of solving
the set of coupled equations are described with emphasis on the alternating
method and its convergence properties. The convergence rate is shown to vary
with device operating conditions and with carrier mobilty. Several methods
of accelerating the convergence of the alternating method arc presented.

Chapter 5 presents two program application examples. The first is a
typical application in device design in which punchthrough current is shown
to vary greatly with a change in source/drain junction depth. The second ap-
plication concerns mobility phenomena observed in strong inversion. Both of
these applications demonstrate two important benefits of numerical analysis
programs for scmiconductor device design. First, these programs can be an
aid in developing and/or proving theories about device behavior. Second, no
a priori knowledge of device operating conditions are required. This is in con-
trast to the analytical modcling case where the proper analytical model must
be chosen depending on the device region of operation (e.g. subthreshold,
lincar, breakdown).

The conclusions of this research and recommendations for further work

are contained in Chapter 6.
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Chapter 2

GRID

The execution time and storage requirements of two-diinensional semi-
conductor device simulation programs are dircctly dependent on the number
of grid points (nodes) in the discretized analysis space. The number of equa-
tions to be solved is gencrally lincarly related to the number of nodes and the
number of arithmetic operations required for the solution is proportional to
N where N is the number of nodes and « is soinewhere between 1.5 and 2.
Reducing the number of nodes in a simulation is, therefore, a matter of great

importance.

~ 2.1 Grid Types

There are two types of grid which are of interest in two-dimensional
device simulation: rectangular and triangular. Within each type there are
variations which have substantial impact on the number of nodes and on
the solution methods which can be used. Figure 2.1 shows several of the
principal variations. Figure 2.1a shows a regular rectangular grid in which
the grid spacing is constant, although not necessarily the same, in both the
vertical and horizontal directions. This grid has the desirable feature that
the discretization coeflicients are constant in both directions so storage is
minimized. It is also the grid on which nearly all numerical analysis theory
is based, thus it was the grid used for most of the carly work on device
simulation. This grid is suitable for any of the solution methods discussed in

the next chapter. Unfortunately, the semiconductor device problem requires
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that the grid be very fine in some regions of the device, but not necessarily
so in others. Therefore, the constant spacing rectangular grid wastes a lot of

nodes in regions of the device where fine spacing is not required.

The semi-constant spacing rectangular grid of Figure 2.1b partially
resolves this problem by allowing the grid to have variable spacing in one
dimension. The savings in grid are not substantial, however, so this grid is
of no great consequence except in its applicability to Fast Fourier Transform
(FI'T) solution techniques. The uniform grid spacing in the horizontal direc-
tion supports a fast solution to Poisson’s equation through the usc of the FI'T.
This technique, its advantages and limitations, will be discussed further in
Chapter 4.

The most common grid is the variable spacing rectangular grid of Figure
2.1¢. The grid spacing is allowed to vary in both directions, yet the cocflicient
storage required for an m by n grid is only on the order of m + n. The
uniformity of the overall structure allows for simple, straight-forward, easy-
to-program algorithms for equation solution regardless of the solution method
uscd. The sole disadvantage of this grid is that it is still rather ineflicient in
grid allocation. Fine grid spacing at any point within the device results in
grid lines which extend this spacing throughout the device in horizontal or
vertical bands.

The grid of Figure 2.1d is a special case of a class of grids in which the
grid lines are terminated within the simulation region of the device. The
uniform horizontal spacing of this grid and the fact that the spacing remains
uniform and exactly doubles as the vertical grid lines terminate means that
this grid is also aplicable to I'I'T solution techniques. A more generalized
form of this grid has variable spacing in both directions and grid lines which

may terminate in cither direction. This is the type of grid used by Adler [2.1]
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in his simulation of thyristors. This grid is obviously flexible in its ability to
place regions of coarse and fine grid throughout the device. The principal
shortcoming of this type of grid is that as the number of terminating grid
lines increases, most of the advantage of rectangular grids (i.e. small storage
and simple algorithms) is lost and one may as well use a triangular grid.

The triangular grid of Figure 2.1e is based on a rectangular grid which
has been distorted so that it conforms with features of the device - dinsonals
arc added to divide cach rectangle into two triangles. This grid has several
desirable features. irst, the underlyving rectangular grid is casy for a user
to specify. Morecover, it is not diflicult to specify operations which distort
the grid to the desired shape.  Second, this grid retains its reetangular
connectivity and thus supports simple solution methods such as line iterative
techuigues and maintains a well- defined matrix structure. On the negative
side, each node has a unique zet of discretization coetlicients =o that ~torage
for an i by n grici is on the order of mp, the number of nodes. Another
diflienlty with this grid iz that in regions of great distortion, the triangles may
become unavoidably obtuse. This condition should be avoided if peible,

IMinally, the completely sencral trianenlar arid of FPreore 2,100 the most
cflicient grid allocation in number of nodes. Spacing may be made arbitrarily
fine or coarse in any local region with no global impoct exeept that the
transitiows between regions shonld be gradual, Coceflicient storage ix aznin on
the order of the number of nodes mn. The regular structure of all previous
grids is Jost, however, so that the solution techniques are necesarily less
structurcd. The PISCES program was written assuiming this tvpe of orid:
however, the grid generation portion of the program senerates the more
structured grid of Migure 2.1c.

The discussion of grid types to this point has assumed stimnlation of
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g, 2.2, Overlaving grid on non-rectangular structures.

a rectangular structure with regions of varving internal orid density. A\
more realistic case for semiconductor device simulaiion is to allow the deviee
structure to be non-rectangular. This is mandatory for the modern two-
dimensional devices deseribed in Chapter 1. Figure 2.2 show: forr method:
of overlaying a grid on a non-rectancnlar structure. The structure shown s
the source region of an TG ET with its overlying tapered oxide.

In Figure 2.24 the taper in the oxide is simply ignored and the deviee
is assumed rectangular. The implication is that the effeet of the portion of

the device outsice of the simulation region is insionificant. This generally
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is not a good assumption although nearly all simulation programs using the
finite difference method have used this type of simulation region. Making
this assumption also requires that the insulator be modeled as a planar slab.
Programs such as CADDET have taken advantage of this with the further
assumption that the clectric field in the insulator is one-dimensional. These
assumptions simplify the simulation process and allow a more rapid, albeit
less accurate, solution. Also, the FI''T method mentioned earlier demands
this tyvpe of grid overlay since 1t requries that the grid must be rectangular
with uniform horizontal spacing. In addition, certain physical parameters
such as permittivity must be constant along any horizontal grid line, limiting

all material interfaces to be planar surfaces.

Figuee 2.2b shows an overlay alternative in which the rectonyutir grid
structure is maintained at the expense of wasting nodes which lie extarnal
to the deviee (l.e. in the space above the thin gate oxide). Thix #ppears
to be a useful appreach when using solution algorithims which depend on
a rectangular simulation region. No application of this type of grid has
been found in the literature. When the solution algorithms do not requive 2
rectangular solution region, the nodes external to the device may be ipnored,
and the grid of Pigure 2.2¢ results. This is the type of grid ue « by the
GEMINT simulation program. Note that both grids (b) and (¢) voquire an
increased grid density at curved boundaries in order to accurately represent
the boundary shape. IFinally, the Tully conforming triaugular grid ol Figure

2.2d provides the most accurate simulation with the minimum number of

nodes.
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2.2 Grid Density Criteria

Given a f{lexible discretization grid, one must then have a criteria for
the proper placement of the grid points within the simulation region. In
semiconductor device simulation, there are two principal driving factors:
accurate representation of the potential and accurate representation of the
net charge.

In the discretization of Poisson’s cquation, the assumption is made that
the potential varies lincarly between nodes (de. the eleetric field is constant),
thus the grid spacing must be made sufliciently sinall in ench direction so
that a piecewise linear approximation to the true continuous potential is
sufficiently accurate. This implies that the grid must be the finest in regions
of high curvature of the potential. From Polsron’s cquation, it i» eaxily seen
that regions of high curvature of the potential corvespond to regions of high

net charge density,

a? 0? —p
s ) == .
(('):rz dy* ) ¢

For IGFETSs, the net charge may be large in the sarface inversion layer
where there are Jarge numbers of {ree carriers or in depletion regions vhere
tonized impurities dominate. Vertical prid spacing in the hiversion layer is
typically .01 pm or less at the surface. Nevtral regions, no matier how highly
doped with tmpurities; do not generally require dense grid concentrations
unless there is some chance that charge depletion or accumulation may occeur
there. The adequacy of a particular grid spacing for a given pioblem may
be determined qualitatively by plotting the potential versus distance in the
device and observing whether or not the piccewise nature of the potential
approximation is cvident. The same cheek may be performed quantitatively

by comparing first and sccond order polynomial curve fits to the diserete
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potential values.

It is also desirable that the total potential change between nodes not
be too large. The criteria for potential changes between nodes depends on
the device characteristics being simulated. For example, Figure 2.3 shows
potential plotted versus lateral distance along the insulator-semiconductor
surface for a device biased in punchthrough. The source is at the left, the
channel region in the middle, and the drain at the right. TFor this bias
condition, there is no inversion layer and conduction is impeded by the
potential barrier near mid-channel. The barrier height is strongly controlled
by the gate; however, it is also under control of the drain by virtue of the
large drain bias. The drain current is proportional to e¥8/Y7 where Vi, is
the barrier height and Vp is the thermal voltage (approximtely 26 waillivolts).

Thus, a 10 millivolt crror in the sirnulated barrier height can result in an

- error in the simulated punchthrough enrrent of nearly 507 depending on grid

spacing and device profiles. As can be seen in the figure, the potentiol drops
approximately 3 volts in .3 gm near the drain; thercfore, the horizontal grid
spacing in this region must be fine enough that less than 10 millivolts error
is made in diseretizing the 3 volt drop. An error of 507 in subthreshold
and punchthrough currents is typical for simulation programs due to this
sensitivity, A stinilar situation exists for avalance breakdown simulations
where larse voltage drops exist across short dictances. Tn this case, however,
one is generally mostinterested in the voltage at which hreakdovwn ocenrs, not
in accurate simulation of the current near hreakdown. The voltage accuracy
required is also not critical, being on the order of a few pereent. The voltaee
drop per grid space may, therefore, be fairly large. Fortunately, currents
are not as sensitive to voltage ervors in the linecar and saturation revions of

operation where aceurate current estimates are normally required,
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I'ig. 2.3. Potential along the insulator-semiconductor interface for a device
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If the region of high charge density is very thin then the change in
potential across that region will be small in spite of the large curvature
since potential is proportional to the second integral of charge. In this ence,
(he requirement for accurate representation of net charge dictates the erid
density required. This is typical of surface inversion layers where mobile
charge densities may vary by several orders of magnitude over a distance of
dpmoor less. Since IGFET drain current is proportional to the integral of
channel charge vertically from the insulator te the neutral bulk, it follows
that one needs a finer grid in regions of high net charge concentration than
in regions of low net charge. That is; a 109 error in mobile charge at o
10'? ¢m™3 concentration near the surface is much more significant than a

-3

10% crror in mobile charge at a 10'® em™* concentration away from the

surface. The Tormer would enuse a nearly 1077 ervor in drain current v hile




the latter would be insignificant. Actually, the difference is not this great.
The cffect is tempered somewhat by the fact that as the charge concentration
decreases away from the surface, the gradient decreases also, spreading out
the lower concentration regions. Thus the current carried by the thick low
concentration regions away from the surface is more necarly equal to the

current carried by the thin high concentration region near the surface.

In addition to inversion layers, accurate representation of net charge is
also iinportant near metallurgical junctions. Since the junctions will generally
be depleted, the net impurity concentration is the driving fuctor. Although
the net concentration of impurities at the junction is not high, the concentra-
tion gradients near the junction generally ave. A fine grid is required, there-
fore, in order to accurately represent, these steep gradients and to locate the
junction. Figure 2.4 shows a PISCES grid with fine spacing normal to the
surface in the chanuel region and normal to the junctions around the source
and drain regions.

An additional point with regard to the accurate representation of charge
concerns the allocation of impurities in a volume to the node representing that
volurme., Typically, the impurity distribution input to a device stinalation
program is evaluated at cach discretization node and that value is assioned
to the node. The total charge within that node’s velume is the product
of the volume and the assigned impurity concentration. In regions of low
concentration gradients, this method is satisfactory; however, in regions of
high concentration gradients, signilicant errors in total integrated charge
may oceur. A better method, therfore, is to integrate the input impurity
distribution over the volume of the node then divide by the volume to arrive at
an average impurity conceentration. In this way, the total integrated impurity

charge will be accurately represented. This method may allow larger grid
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IMig. 2.4. PISCES grid for an IGIIVT,

spacing in the junction areas of the device.

2.3 Boundary Sensitivitics

One of the eritical steps in deviee simulation is choosing the simulation
region. This region must be chosen sufliciently large so that the active region
of the deviee is accurately represented and is isolated from the deleterious
effeets of the simulation region boundary. In general, the simumlation region
must be large enough that any further increase in size has no eflfect on the
results of the simulation. This is a cheek which may be used in practice.
On the other hand, there is a competing desire to keep the simulation region
small in order to reduce computation time and memory size. Also, the bound-

ary conditions themselves must accurately represent the conditions at the
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[Fig. 2.5. Boundary condition sensitivitics in the linear region; Ve, == 2,417,

Vieg = Vg = 0V, and Vp = .01V,

contacts to the deviee, Some device simulation progriuns make stmphifying
assuwinptions about these boundary conditions which greatly reduce the com-
putation time at the expense of reduced accuracy in the solution.
Figure 2.5 shows the results of four PISCLES simulations, each using
a dilferent boundary condition equivalent to those scen in other simulation
g . . . . N
programs.  The simulation region was chosen to be rectangular in all four
cases in order to maintain cquivalency. The device stilated is an NNOS
FIET with a metallurgical channel length of 2 um, gate length of im (exeept
’ L\ O

. . - . . 4 i . . .
Figure 2.5a) substrate doping of 101 ™3 p-type and an oxide thickaess of

o O
1000 A.

In Pigure 2.5 Lhe source and drain regions are approxinated by vertieal
5 ¢ A
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Fig. 2.6. Lateral impurity profile at the semiconductor surface.

boundary contacts | deep as used in first generation simulation programs
[2.2, 2.3]. The potential applied to this contact is reduced slightly from the
external bias potential to account for the potential drop which oceurs across
the depletion region in the heavily doped side of an abrupt junction. In

Figure 2.5b the source and drain regions are approximted by a unifermly

doped rectangular region at 10'? cm ™3, Each region is 1 pm deep and 1

long. IMigures 2.5¢ and 2.5d both have Gaussian source and drain profiles with

] N
M em 3

peak concentrations of 1 and lateral and vertical junetion depths

of 1 pm. The only diffecence in these two structures is in the aceuracy of

representation of the source/drain profiles. In the grid of IMigure 2.5¢, there
are only four vertical grid lines in the source/drain while in the grid of Figure
2.5d there are six. The continuous doping prolile and the prid spacings ave
shown in IMigure 2.6.

In the direct contact case, Pligure 2.5a, the equipotential ines are pulled
£ {titg
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away from the surface at the edges. This means that the surface potential

increases near the source and drain and the surface is more strongly inverted
there than in mid-channel. Note also that the equipotential lines do not
flatten out in the channel region but curve downwards along the entire
channel length. This indicates that the long-channel assumption of a one-
dimensional potential gradient in the channel does not hold and the device
will exhibit short-channel characteristics (i.e. lowered theshold and increased
drain conductance). The equipotential curves of the rectangular source/drain
structure are nearly identical.

In contrast, the Gaussian source/drain structure of Figure 2.5¢ has flatter
equipotential lines in the channel region which do not pull away from the
surface as rapidly at the channel edges. Since the surface is less strongly
inverted the drain current will be somewhat less. The equipotential lines
cof the finer source/drain grid spacing structure of igure 2.5d are nearly
identical,

The drain current for all four structures is plotted as a function of gate
voltage in Figure 2.7. The currents were evaluated for gate voltages of .6V to
2.4V at 2V intervals which accounts for the piccewise esntinuous appearnnee
of the plots. The characteristies of (a) and (b) are identical but diller from
those of (¢) and (d) which are themselves identical. The expected variation in
drain current is scen to be approximtely a factor of two at large gate hiases
but neavly an order of magnitude in the subtheshold repion. The eqpuivalence
of the drain current for structures (¢} and (d) implies that an accurate
representation of the source/drain impurity profile may not be as important
as representing its general shape, particulacly in the vertical direetion near
the channel. Note, however, in Figure 2.6 that although the two grid spacings

differ, both have a node exactly at the junction which serves o aceurately
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Iig. 2.7. Current sensitivity to boundary conditions in the subthreshold and
linear regions for the structures of Figure 2.5.

locate the junction and thus fix the metallurgical channel length.

Figure 2.8 shows the same four structures biased in the saturation region
of operation. The pinch-off point is clearly visible as the point along the
channel where the equipotential lines become perpendicular to the insulator-
semiconductor interface. To the left- of this point, the electric field forces
electrons toward the surface into the inversion layer. To the right of the
pinch-off point, there is no inversion laycer and the electrie field tends to spread
oul the clectrons as they travel toward the drain. In structures (a) and (b) the
drain region pushes the equipotential lines down and to the left moving the
pinch-off point to near mid-channel wherceas in structures (¢) and (d) it is much
to the right of center. The distance from the source to the pinch-off point is
the effective channel length and the channel length modulation caused by the

pinch-off point moving to the left gives rise to drain conductance. Obviously,
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Fig. 2.8. Boundary condition sensitivities in the saturation region: Vi =
2‘/, ‘/UG == "/S == 0"/, :m(l V']) == SV.

in structures (a) and (b) the drain has greater control over the location of the

pinch-off point; therefore, the currents are larger and the drain conductance

is larger than for strutures (¢) and (d). This is illustrated in Figure 2.9 where

drain current is plotted versus drain-to-source voltage at .5 volt increments.

The gate voltage is 2 volts. '
In addition to the larger currents and drain conductance expected for

structures (a) and (b) it is also observed that there is a noticeable dilference '

in current for (a) and (b) themselves. Close inspection of the equipotential

line plots shows that indeed the pineh-ofl point for structure (b) is lightly to
the left of that of structure (a) resulting in the larger current. The source of

this slight shift, he wever, is obvious even in IMig 2.8, 1€ the equipotential lines
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Iig. 2.9. Current sensitivity to boundary conditions in the saturation region
for the structures of Figure 2.8,

directly underncath the left edge of the drain of structure (b) are compared
to the equipotential lines underneath the drain contact of structure (a), the
cquipotential lines of structure (b) are scen to extend deeper into the sub-
strate. This is because the left and right boundaries of the simulation regton
of structure (a) are too close to the active region of the device and the bound-
ary condition assumptions are invalid. The contact portion of this boundary
is a fixed potential boundary condition (Dirichlet) and is comparable to the
rectangular source/drain assumption of structure (b). Along the remainder
of the boundary of structurc (a), however, a reflecting boundary condition
(Neumann) assumption is made which is clearly inaccurate. That is, the
larger simulation region of structure (b) shows that the equipotential lines

arc not. at all symmetric about a vertical line below the left edge of the drain.
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This illustrates the point made at the beginning of this section: the
simulation region must be large enough to be independent of the solution.
In particular, reflecting boundaries should only be placed where the problem
i1s symmetric in some small region about the boundary. T'or IGFETSs the. e
are three boundaries to choose since the top surface is generally covered with
the gate electrode which forms a natural boundary. The bottom boundary
condition, whether Neumann or Dirichlet must be placed deeply enough into
the device to be in a charge neutral region beyoud any depletion regions which
may arise in Jhe simulation. Placement of the left and right boundaries is
not as well defined . The Dirichlet portion of these houndaries representing
the source and drain contact clectrodes are not critical and may be placed
anywhere within the neutral source/drain regions. The reflecting pertions of
these boundaries, however, dictate that they be placed sufliciently far from
the channel region that the equipotential lines are roaurally one dimensional
(horizontal) in the vieinity of the boundary for all bins condition ~imulated,
Inspection of Figures 2.5 and 2.8 reveals that none of the simulation totally
adhiere to this rule especially along the drain boundary in the high drain bios
case of Figure 2.8, The simulation region must contain some latera! extension
of the one-dimensional portion of the source and drain regions and <ince the
curvaturce of the equipotential lines extends out further at higher dvain biases,
the lateral extension of the dradn region s significantly targer than that of the
source side. Typically one to two chonnel lengths of extension on the drain
side is suflicient for IGFETs at nominal drain biases. Note that ~ince the
potential and charvge profiles in the lateral extension regions are alimost one-
dimensional, a coarse horizontal grid spacing is suflicient and Little extra grid

is required. An example of adequate lateral extension was shown in Figure

2.1.
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2.4 Summary

The various types of analysis grids used for semiconductor device <imula-
tion are presented along with the advantages and disadvantages of cach.
Methods of overlaying these grids on non-rectangular structures are con-
sidered. The triangular grids are the most flexible in conforming to device
shapes with the minimum number of nodes. It is shown that the denity
of the grid should vary in different regions of the device. The densext erid
should oceur in regions of high net charge donsity or larze eradients of net
charge. For IGIETs this means that the grid spacing should be small nor-
mal to inversion layvers and metallurgical junctions. Checks for determining
the adequacy of a particular grid spacing are suggested., The effects of Lurge
voltage drops between nodes are presented and shown to be hichly problem
dependent. An improved method for assigning impurity choree to a node is
deseribed which preserves the integrated net impurity charge,

Two of the source/drain boundary condition siraplilications u=cd by
other device simulation programs have been examined and found to be gros-ly
inaccurate. Suflicient grid to provide accurate location of the source Jiain
junctions along the channel is necessary but a coarse Interol spacing in the
source/drain appears adequate as long as the vertical shape is accurately
represented. The importance of proper choice of the sitmul tion regien has
been demonstrated and suggestion: are made {or choosing thi: space.

The next chapter deseribes the finite difference dizevetivation of the

model equations on a triangular grid.




Chapter 3

DISCRETIZATION

Diseretization of the semiconductor model equations using  finite-
difference techniques on rectangular grids is a well established procedure.
Recent work by Greenfield [3.1] has expanded these procedures to show how
to perform finite-difference discretization of Poisson’s equution on a reetan-
gular grid with non-planar surfaces and interfaces. The use of finite-difference
technigues for diseretization of the semiconductor model cquation. on a tri-
angular grid, however, has not been previously desceribed. The <eniiconductor
model equations which deseribe the behavior of semiconductor deviees are
presented in what follows.

Poisson’s equation desceribes the behavior of electrie flux density in
regions of net charge. Since charges are sources of cleetrie flun, the flux

density mnst diverge in regions of net charge as given by
— —
VD= (3.1)

where D is the electrie flux density and pis the net charge concentration.
The current continuity equation deseribes the time rote of change of

carrier concentration.  This concentration must change it there is not a

balanee between carrier generation, recombination, flnx into, and flux out

of a region of the deviee. This balance is expressed as

on )
= (., - I, V.J. 3.
Jdt ! q (8:22)




where n is the free clectron concentration, G, and I, are the clectron

generation and recombination rates, ¢ is the unit charge, and .7” is the
electron current density. The free hole concentration is p and the other
quantities related to holes are analogous to those for electrons.

Carrier transport is described by a drift term dependent upon the electric
field and a diffusion term dependent on the carrier concentration gradient.

This is given by

.7,1 = q;t,,nﬁ + q[)nﬁn (3.3a)
jp = (1/1I,pE — q[)pe’p (3.3h)

where g, is the electron mobility, ]_1: is the electric field, D, is the eleetron
diffusion constant and g, and D,, are the hole mobility and diffusion constant.

[n nondegencrate semiconductors, the free carriers have a Boltzmann
distribution ol energy which leads to a relationship between the carrier con-

centration and potential as given by
i T ,
n = n etV men)/kT (3.1a)

p = nget(Pp=¥)/ET (3.1h)

where n; is the intrinsic carrier concentration, ¢+ is the eleetrostatic potential,
¢, and &, arc the clectron and hole quasi-Fermi potentials, & is Boltzmann’s
constant and 7" is the ahsolute temperature, The nondegenerate assumption
is nol required for this work, but it allows simplification and provides a clearer
picture of the discretization. Allowing degeneracy would require use of the
Fermi-Dirac distribution function which leads to a Fermi-Dirac integral for
the carrier concentration instead of the exponential. Numerical approxima-
tion of the Fermi-Dirac integral is computationally no more expensive than

evaluation of the exponential, so little penally is paid by allowing depeneracy.
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Equations (3.1)-(3.1) represent the semiconductor model. The following
relations serve to tie these equations together. The net charge p has three

components

p=gq(p—n+N) (3.5)

where IV is the net ionized impurity concentration. The electrostatic poten-

tial, electric ficld, and electric flux density are related by

= -V (3.6)
and
ij = cE (.3 7)

where ¢ is the permittivity. A link between the carrier mobility and diffusion

constant is provided by the Einstein relation,

kT
D,= —u, (3.Ra)
q
kT
D,= - 3.8t
¢ q Hp (3.8h)

where again nondegeneracy is assumed.  Allowing degeneracy here would
require insertion of a multiplicative factor which is a function of the quasi-

FFermi level. Finally, the thermal voltage is deflacd as

Vp o T (3.9)
q

and the earrier generation and recombination terms are combined into a net

recombination term as

Up = R, - G, (3.100)
U, =1, - G, (3.100)
38
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in order to simplify the writing of equations.

Inserting the relations of Egs. (3.5)-(3.10) into Equations (3.1) (3.4) and

assuming stcady-state such that g? = g%’ = 0, the semiconductor model
equations become:

6-((6¢)):—q(p—n+N) (3.11)

V- J, = qUn (3.12a)

V-J, = —qU, (3.12h)

.7n = q,u,L(nI_L: + VT‘E”n) (3.13a)

_J:, = ([}LP([)E — VT—V'p) (3.13b)

n = nely )/ Vr (3.11a)

p = nyeler V)V, (3.11h)

3.1 Poisson’s Equation

Figure 3.1 shows a section of a hypothetical grid with five teiangnlar
sections labeled i t5 having one common node variously labeled 7y i and
referred to as node i The process of discretization involves the dotermination

of Lwo sets of parameters: the area assigned to each node, and the coupling

cocflicients between pairs of nodes.
The arca assigned to a node is taken to be the area closer to that node
than to any other node with which it shares a triangle. Thus, in the five

triangle example of Figure 3.1, the area A; bounded by the dashed line [

represents the boundary of the area assigned to node o This bonndary is
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Fig. 3.1. Sample grid wich five triangles. The triangles are labeled £ f5, A,
is the area associated with the central node, and /; i+ the boundary
of that area.

conveniently formed by the perpendicular bisector of cach edge conunon to
node 17.

The coupling coeflicients are obtained from the diseretization ol Poisson’s
equation. This is achieved by applying Ganss™ law to 12q. (3.1) i nd converting

integrations into summations. Applying Gauss' law to Eq. {3.1),

][ D di - / pd A, (3.15)
l} J A

13 1
fuserting the relation of P, (3.7) and recognizing that the integrals may he
eviluated by parts common to cach triangle,

fﬁ;.dm.f (i;.dzw....+/ i~
{ [ L

al 2 ¥

/ pdA Y / pdA by / pdA (3.16)
AN Ay J AL

; I
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where l;,, and A;,,, are those portions of the node 7 boundary and areca lying
within triangle t,,.

At this point, two assumptions arc made: the permittivity and the
electric field are constant within a triangle. The first of these requires only
that material beundaries lie along triangle edges, a requirement easily met
with the flexible triangular grids. The assumption of constant electric field
within a triangle is a natural result of the triangular discretization since the
only unique interpolation function of three points in two dimensions is a lincar
function, and lincar potential implies a constant electric ficld.

These assumptions allow the line integrals to be replaced by dot products.
Furthermore, since the net charge assigned to a node is considered to be
evenly distributed throughout its area, p is a spacial constant and may be

taken out of the integral. These changes to 13q. (3.16) yicld

—

ek (Tiljl + 7;'1;\-1) + el (hzfz +_[i2k2) + o+l (74'515 + Tz?)kS)
= piAi (3.17\

where -[imjm is the vector normal to the portion of the boundary I; in triangle
., which is perpendicular to the 17 side. The magnitude of 71',,,1',“;.“: equal to
the length of the boundary segment and the positive direction is away from
nodc 1. The other boundary normal vectors are similarly defined.

Figure 3.2 shows the labeling convention for a sample trianele. The
vectors 1 and g are the unit vectors in the 23 and /& directions respectively,
The subscript denoting the triangle number has been dropped in the figure
and the boundary segments [;; and (i have been relabeled with their length

hj and hy. Equation (3.17) may then be written in summation notation as

Z (mEm * (hjntﬁjm + h*/\'m'ﬁkm) - piAi (-‘““)
I<m<M
41
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Fig. 3.2. Labeling convention for a triangle. The distance between nodes is
d, the length (height) of the boundary segments is h, and # is a
unit vector.

where the problem has been generalized to include any number Af of triangles
containing the common node 1.
jpud — . .
The dot product [ -1, is the component of the electric field in the iy
direetien. Due to the assumption of constant clectric field within the triangle,
this may be discretized using Equation (3.6) to obtain

Vi ,
d;

-
< -
I'-uy =

where d; is the distance between nodes © and j. Equation (3.18) may then be

writien as

h; hi .
Z Crn((z/)i - d)jm)aJrn + (d’i - d’kvu)d' ‘:m‘) - piAi~ (320)
1Sm<M ym ferm

This is the discretized form of Poisson’s cquation. Summing the terins over

all triangles containing node 7 results in one equation containing the unknown
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potentials of node 7 and all adjoining nodes. The term ("2{,‘-;_ is referred to
as the coupling coefficient between nodes ¢ and j in triangle m. There is a
similar coefficient for the same two nodes in the adjacent triangle (if there is
one) which adds to this to form the full coupling coefficient. Note in IEquation
(3.20) that the coefficient of every node adjacent to node 7 is also a cocfficient
of node 7 with opposite sign, thus the coeflicient of ¥, is positive (¢, h and d
arc all positive) and exactly cqual to the negative of the sum of the cocflicients

of all of the adjacent nodes.

Repeating the summation of Eq. (3.20) for cach node in the grid results
in a set of N equations in /N unknowns where IV is the number of nodes in the
grid. The coeflicient matrix for this set of equations is diagonally dominant.
Note that if the grid is rectangular (properly composed of right triangles) the
set of equations reduces to exactly that of the standard five-point difference

“ scheme.

Unfortunately, the charge concentration p; is a function of potential as

described in Eq. (3.14). Combining Egs. (3.5) and (3.14) for node i gives

pi = q(nle(¢,,~w.>/vr AL Ni), (3.21)

thus the potential ¥ appears nou-linearly in the right hand side of 114, (3.20).
The resulting non-linear cquation is solved using Newton’s method. That is,

it is linearized and solved iteratively until converged.

Combining cquations (3.20) and (3.21), lincarization is achieved by first

replacing every ¥ by ¥ + A,
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> ‘m(((% + AY;) = (Yjm + A;bjm))ﬁf_"},

1<m<M djm
dkm

= in(nle(dw-"“(¢i+A’JJa‘))/VT — B B)=6a)/ Ve N,-)

A .
+ (("J)z + Alr/"t) - (wkm + Al/)k"l)) k"}_) J

= in(pie”A’J"/VT — nel/Vr 4 N,-) (3.22)
then taking first order Taylor-series approximations to the exponentials,
= qA(pi(1 = AV /Ve) — ny(L+ A/ Vi) + N;)

= p;A; - q.-\,(p,- + 'n,')Al/’i/VT. (3‘23)

Placing all terms in Ayr on the left hand side results in the iterative form,

h; /Lk )
(n'((-ll,i”i - AL/'jm) o (Alf{’i - A"r‘/'km)' e )
djm ([km

+ qA (pi + n)Ay, Ve

hjim him .
= - Z (m((wi - df’jm) AT + (l/l)z - d’krn) }b B > + pw‘\i- ("ZBt)

l<m< M djm dim

1<m<NM

The right hand side of Fq. (3.24) is the residual of Poisron’s equation and the
left hand side contains the unknown potentials for the Newton step. After
cach solution for the Av's, the potentials are updated, the potential depen-
dent terms are re-evaluated, and the iteration proceeds until convergence is
achieved.

When Eq. (3.24) is assembled for every point in the grid and put in matrix

form, the coellicient matrix has exactly the same terms in it as the coeflicient

matrix of Eq. (3.20) except that positive terms resulting from the linearization
of the charge concentration have been added to the eutries on the diagonal.

This matrix is positive definite resulting in desirable convergenee properties.
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3.1.1 Area Allocation

In the foregoing discussion, the vectors A j,, 1 jm and Ay, tikm of 12q. (3.18)
were kept separate in order that the electric field may be expressed in terms
of its components in the @;,, and U, directions. As shown in Xq. (3.20)
these components are conveniently obtained from the potential differences
between nodes. Additional insight may be gained, however, by performing
the vector sum as illustrated in Figure 3.3. The clectric flux crossing the node
t area boundary [; within this triangle is identically the flux crossing the line
segment s joining the midpoints of the adjacent sides, thus the choice of the
node ¢ arca boundary is somewhat arbitrary. In fact, the above dizeretization
applies to any simple boundary which has these midpoints as its endpoints.
IFour random possibilities are shown in Figure 3.4.

One such alternative boundary is to use the line segments joining the
triangle centroid to the adjacent side midpoints in the manner of Winslow
[3.2]. With this boundary, cach node is allocated one-third of the total
triangle area. This allocation scheme was tried with the PISCLES program and
generally yielded satisfactory results except that some aszemblies of trinngles
resulted in uneven distribution of area. An example is shown in Pigure 3.5
in which two similar discretization grids arc given with the only difference
being the triangle orientation. Note that in case (a) there are four identical
triangles connected to the central node while in case (b) there are eight.
As a result, the central nede is allocated twice as much area in caxe (b) as
in case (a). This unequal weighting results in perturbations to the desired
solution. In contrast, application of the perpendicular biseetor method to the
grids of Figure 3.5 results in equal allocation of area for the two cases. The

perpendicular bisector method of forming the node arca boundary appears

i
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Fig. 3.3. Ilquivalence of flux boundary s to flux boundaries h, plus hy.

[Mig. 3.4. Various boundaries with equivalent flux conservation characteris-

tics.
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(a) (b)

‘ig. 3.5. Dependence of area weighting on triangle orientation using the
centroid method. The area allocation in case (b) is twice that of
case (a).

to be the best arca allocation scheme for trinngular grids in semiconductor

problems.

3.1.2 Obtuse Triangles

The above derivations work quite nicely for acute triangles; however,
when the triangles become obtuse, adjustinets need to be made. The need
arises from the fact that the intersection of the perpendicular bisectors of
the sides of an obtuse triangle occurs outside of the triangle as illustrated in
Figure 3.6. In this example, the coupling cocflicients are exactly as derived
earlier except that the coupling coeflicient between nodes ¢ and j becomes
negative, —(;;ij’ since the segment hj has reversed direction. It can be shown
that this choice of coupling coceflicients still accurately accounts {or the flux
passing through the line segment s. Intuitively, it may be reasoned that the

vector sum of the directed line segment A minus the directed line segment b

is the dirccted line segment s, so the veetor sum of their normals also equate.
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Fig. 3.6. Coupling coeflicients for Poisson’s equation on an ohtuse triangle.

Note that the coupling coeflicient goes from po:zitive to zero to negative as
the triangle goes from acute to right to obtuse, <o there i~ no discontinuity ¢
in the transition from acute to obtuse.
The total coupling cocflicient for nodes ¢ and J includes a contribution
from both triangles which share the side joining nodes 7 and . Thus, although
one component of the coupling coeflicient may be negative, the total coupling
cocflicient may still be positive if the contribution from the adjacent triangle
is sufficiently large and positive. 1t can be shiown that the total coupling
cocflicient will be positive if the sum of the opposite angles is less than 180
degrees. This condition can always be satisfied for triangles which are not on
the solution region boundary or on a material interlace by reconnecting the
triangles. That this is so can ecasily be proven by hypothesizing a situation in
which two adjacent triangles exist whose angles opposite the common cdge
sum to more than 180 degrees. If the four nodes composing these two triangles \ x

arc looked upon as a quadritateral, then the common edge is a diagonal of
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the quadrilateral, the sum of whose interior angles must equal 360 degrees.
If instead of dividing the quadrilateral into two triangles using this diagonal,
the other diagonal is used, two triangles result whose angles opposite their
common side necessarily sum to less than 180 degrees. Obviously, if the edge
in question composes a solution region boundary or a material interface , the
triangles may not be reconstructed; however, subdivision of a triangle into

two or more triangles can eliminate the problem in these special cases.

The occurrence of obtuse angles also complicates the arca allocation
method. Looking again at Figure 3.6, the boundary for the area allocated to
node ¢ is no longer defined by the line segments hy and hy as they were in
Figure 3.2, One possible choice of boundary is that portion of line segment hg
which lies within the triangle. Unfortunately, this choice does not meet the
prerequisite that the boundary include the midpoints of the adjacent sides,
thus there would not be conservation of flux within the triangle using this

boundary.

A better choice for the boundary of the arca allocated to node 7 is
the line segment s in Figure 3.6, the segment joining the midpoints of the
adjacent sides. This choice satisfies the condition for conservation of flux
and is somewhat better than the centroid method in area weighting in that
it allocates one-fourth of the triangle arca to node 7, one-fourth to node j,
and one-half to node k. The acute and obtuse area allocation schemes are
identical for an angle of 90 degrees so there is a smooth transition from one
to the other. Figure 3.7 shows a hypothetical grid with various triangle types
to demonstrate the arca allocation scheme. The solid lines are the triangular

grid and the dashed lines are ihe area boundaries.
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Fig. 3.7. Arca allocation with a mix of acute and obtuse triungles.

3.2 Continuity Equation

The discretization of the continuity equation will be described only for
electrons since the discretization for holes is analogous with the exception
of signs. Also, the discretization of the electron transport equation will be

performed in one dimension only. The reason for this will be explained later.

3.2.1 Llectron Transport Equation

From Eq. (3.13), the clectron transport equation in onc dimension is

on
Jn = qunl nlo + Ve S0, 395
= a0 Vi ) (3.29)

The standard finite-difference approach to disceretization of this equation

would result in

Ju(87) = q,ln(A;)(n(A;)I?(A._,x) + Vo As _,) (3.26)
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where a uniform spa .ing of Az is assumed for simplicity. Insertion of Lq.
(3.28) into the continuity equation (3.12a) yields a single equation in the un-
known n assuming that the electric field is given. However, it can be shown
that this form of the transport equation leads to numerical instability when-
ever the voltage change between nodes exceeds 2V7. This point was noted by
Scharfetter and Gummel [3.3] and has resulted in formulation of a discretiza-
tion scheme which avoids this diffliculty. The method will be summarized
here in order to provide needed background for further discussion.
Equation (3.25) may be rcarranged as

on 4 E Jn
—t = — .
dr Vp g, Vr

(3.27)

Given two nodes separated by a distance d as in Figure 3.8 and assuming
that J,, u,, and E are constant between these nodes, then I2q. (3.27) may
be viewed as a first order differential equation in n with constant coeflicients.,

The general solution to this equation is

4 J o e
n=Ce Fz/Vr 4 0 (3.28)
gpnls

Evaluating this equation for n = n; at = 0 results in

In
C“m_@mﬂ

Using this value for C and cvaluating Eq. (3.28) at node j yiclds

'] P Jn
n; = (n,- »A—"I;‘)(,"f'“/ Vg -2t (3.30)
qfinls qin
which may be rearranged as
— ol o™ ™M '
Jn _ q/[n[/(] _ e“"/‘(l/v’r + 1 - eEd/VT) (3-”)




Fig. 3.8. Labeling convention for one-dimensional current transport.

or equivalently

("/)i - 101) ny ng 5
J,, = qu, T L ) 3.32
ar d = e=Ghmwive T 1 — elva—¥;)/Vr (3.32)

This is the Scharfetter-CGumimel form for discretization of the electron trans-
port equation in one dimension. One may easily verily that in the limit as
the potential difference between nodes approaches zero, 1hq. 3.32 becomes
identically the diffusion term while as the potential difference becomes large,

it becomes identically the drift term.

3.2.2 Electron Continuity Equation

The discretization of the electron continuity cquation will be perforined
in a quasi-two-dimensional form using the one-dimensional transport equa-
tion. As with Poisson’s equation, we begin with the acute triangle case and
use the boundaries shown in Figures 3.1 and 3.2. Applying Gauss’ Theorem

to [q. (3.12a),

7( Jo-di = / qUndA. (3.33)
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The discretization process from this point parallels that of the Poisson equa-
tion (Eq. 3.15 to Eq. 3.20) except that quantities on the left hand side of the
equation are taken to be constant only along an edge of the triangle instead

of over the entire triangle. The discretization leads to a form which is similar

to that of Eq. (3.18)

Z (Jnjm ) (h_)magm) + Jnkm : (hkvnakm)) = qUnAi (334)
1<m<M
where J,,jm is the electron current density along edge 75 in triangle m and

Jnim 1s similarly defined. Note that since J,, cannol be assumed constant
— — — —

over the triangle, Jnjm # Jnkm. Since Jnj,n and Jup,, are one-dimensional

current density vectors in the 4, and ., directions respectively, the dot

products become multiplies and [q. 3.34 becomes

Z (Jnjm.hjrn + Jnkmhkm) = q(]nAi (335)

1<m<M

where the current density is taken to be positive in the direction away from
node 7. Thus the electron current out of the arca of node 7 into the area of
node j in triangle m is the current density, Jnj.,, times the length of the
perpendicular boundary through which the current flows, hj,,. This samc
current density also flows through a perpendicular segment of the node ¢
boundary in the adjacent triangle. The total clectron current out of the node
7 area is the summation of the current crossing the arca boundary into each

adjaccnt node, and this total must equal the recombination rate qU, A;.

Finally, Eq. (3.32) may be inserted into 12q. (3.35) dropping the g from
both sides to yicld




Pnjmhjm o[ Mjm n;
Z ( (¥4 1/’J"‘)(1 — e~ (¥i—¥jm)/Vr + 1— e(w.-—‘p,,,.)/vr)

1<m<M djm
l"nkmhkm L Nim P"i
T e ¥ 'p’"")(l vV T 12 e(w.wkm)/w))

This is the fully discretized electron continuity equation. The unknowns are
the electron concentrations n;, n;,,, and nim, while the mobilities, potentials,
and electron recombination rate are assumed to be known; although, each
is actually a function of the electron concentration. The potentials are a
strong function of the electron concentration through Poisson’s equation, thus
alternating solutions of the Poisson and continuity equations are required
until convergence is obtained. The mobilites and electron recombination
rates may also be functions of the clectron concentrations, but the functonal
relationships are generally very weak so that merely updating the mobility
and recombination rate after new electron concentrations are computed is
sufficient.

When Eq. (3.36) is assembled for every node in the grid, onc again has
N equations in N unknowns as in the Poisson case; however, the continuity
equation does not have to be solved in the insulator regions of the device so
that one may limit the solution to only those nodes lying in the semiconductor
region. The cocflicient matrix does not have the desirable iteration properties
of the Poisson coeflicient matrix, but since iteration is not required to solve
the continuily equation, this point is not critical. Also, the cocllicients look
rather formidable at first, but a carcful look will show that the coefficients
are well behaved and, in fact, no difliculties in obtaining a solution were ever
obscrved in the PISCLS program. The well behaved nature of the coeflicients

is demonstrated in the fact that
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1+ e(i—ve)/Vr 1~ Ve for 72 0; (3.37)
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— f Y1~ %2 .
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unh

Finally, note that the coupling terms #2* in Eq. (3.36) are analogous to the

terms ¢ in Poisson’s equation, Eq. (3.20).
d q

3.2.3 Obtuse Triangles

As in the casc of Poisson’s equation, adjustments need to be made to
the continuity cquation discretization in obtuse triangles. In the Poisson
dceiscretization, the node area boundary was pinned at the midpoints of the
sides as the triangle became obtuse while the coupling coeflicients, 5‘?, were
allowed to become negative in a rather natural manner. The continuity
equation necessarily uses the same boundary as Poisson’s equation but cannot
allow its ’f‘};}—' terms to become negative as the trangle becomes obtuse. This
discrepancy stems from the quasi-two-dimensonal nature of the continuity
cquation discretization.

Figure 3.9 graphically depicts the reasoning behind the choice of coupling
coefficients for the continuity equation in acute and obtuse triangles. The
current density flowing from node a node b is shown as jn. In triangle (, this
current density passes from the node 73 arca into the node jp arca through
a cross-sectional window of width hj;y which is the length of the boundary
segment. (Note that node a is equivalent to both 7y in t; and 7y in 1)
However, in the obtuse triangle, {;, the current density passes through a
cross-scctional width of hgy which is the projected length of the boundary

segment onto the perpendicular to the current density vector. The value of
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Fig. 3.9. Coupling coellicient derivation for the continuity equation on acute
and obtuse triangles.

h used in the total coupling coeflicient hetween nodes a and b is the sum of
these two terms, 7.e. the Lotal cross-sectional width of the common boundary
between the two nodes.

Note in obtuse triangle ¢y, that there is no common boundary between
nodes ¢; and j; so hj; = 0 and no current is allowed to flow between them.
Current may be allowed along this same edge in an adjacent triangle, however,
if the opposite angle is acute. This condition can be assured, as was shown in
Section 3.1.2, as long as the triangle edge is not a solution region boundary
or a material interface. ISven these eases can be handled by subdivision of

the triangles, so it is never necessary for the continuity cquation coupling

]

cocfficicnt between two adjacent semiconductor nodes to be zero (except in the
!
degencrate case of a perfectly rectangular grid structure where the trinngle .
cdges representing the diagonals of the rectangles have coceflicients of zero). {
;
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Note also that as in the Poisson discretization, there is no discontinuity in

the choice of coupling cocflicients as the triangle passes from acute to obtuse.

3.2.4 Absence of Two-Dimensional Scharfetter-Gummel Discretization

As mentioned earlier, the Scharfetter-Gummel algorithm for discretiza-
tion of the electron transport equation docs not have an analogous form in
two dimensions. This can be shown as follows. Equation (3.13a) may be

rewritten in two dimensional form as

T on on
Jn = (”L”(TL E. i, + K,a,) + Vp (EE"UI + .(_D?juy))
) )
= q““(nE + V'] ‘ ”) + WM( Izy + VTl) J
dy
= Juzilz + Juyily (3.38)

where iy and @, are the unit vectors in the x and y directions. NMaking the
— —

necessary assumptions that pu,,, J, and IY are constant over the triangle, then

the  and y components of 15q. (3.38) may be handled separately using the

one-di'nensional algorithm. In the z direction,

an I Jnz
Jr an qu. Vr
=an-+ g3 (3.39)

where a and 8 take on the obvious values. Similarly, in the y direction,

on I'Jy Iny
= - =n 4 -
()1/ V;r qa Vo
= yn + §. (3.10)

It is a necessary and sullicient condition for a solution to exist for 19gs.
(3.39) and (3.40) that

"9 .
o “n 9%n

Ardy  dydz

(3.41)
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Evaluating these terms yields

3%n g
dzdy 6_(7n +9)
= v(an + B) (3.42)
and
9%n
dyozx 5~(an +A)
= a(yn + 9). (3.43)

Thus, the necessary and sufficient condition for a solution to exist is

yan + 13 = ayn + ab

or

18 = ad. (3.14)

Inserting the values of a, 3, v, and é from Eqs. (3.39) and (3.40),

By Jas o Ep Jny
VT QIthT ",T q#nVT
or
E!/ J"y
S == . 3.45
Ly ™ Jus (315)

Therefore, a solution exists if and only if 2 and J are collincar; that is, only

if the problem is one-dimensional.

3.3 Summary

The model equations were introduced and finite-difference discretization
on an irregular triangular grid was described. Discretization of DPoisson’s

equalion on an acute triangle was shown and subtleties of arci weighting
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schemes were addressed with the perpendicular bisector method shown to be

preferable. Modifications to the area weighting were shown to bc¢ necessary
for obtuse triangles. Also, coupling coefficients within individual triangles
were seen to be negative for the edge opposite an obtuse angle to achieve
proper conservation of electric flux. However, it was demonstrated that the
total coupling coeflicient (the sum from two adjacent triangles) need never
be negative as long as the triangle edge opposite the obtuse angle is not a
solution region boundary or an interface between dissimilar materials.
Discretization of the electron continuity equation was described in a
quasi-two-dimensonal form using the Scharfetter-Gummel algorithm for dis-
cretization of the electron transport equation. Obtuse triangles were also
shown to require special consideration in computing the coupling cocflicients

for the continuity equation diserctization. The abscence of a two-dimensional

form of the Scharfetter-Gummel algorithm was demonstrated.

The next chapter covers the various methods of solving the combined
Poisson and continuity discretized equations, factors allecting convergence,

and means of accelerating the convergence.
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Chapter 4

SOLUTION TECHNIQUES

Discretization of Poisson’s equation and the continuity equation results
in two systems of equations which must be solved in order to determine
the potentials and carrier concentrations. There arc (wo aspects to the
solution of the equations—one is the solution of the matrix equation Mz =
y representing either the discretized Poisson or continuity equation by itself,
the other is the consistent solution of the two coupled equations together.

This chapter deals with both of these aspects.

4.1 Matrix Equation Solution Mecthods

In this section, various grid solution method combinations are discussed
for both Poisson’s equation and the continuity equation. It is important to
note that the coefficient matrices in these matrix equations are sparse [4.1] -
that is, most of the matrix clements are zero. The matrix clements are
the coupling coeflicients between nodes in the grid, so only those clements
corresponding to coupled nodes will be non-zero. This sparsity must be
exploited to minimize the equation solution time.
The matrix equation solution methods may be divided into two classes:
direct and iterative. In the direct solution techniques, a linear equation solu-
tion is achieved in a deterministic number of steps of the solution algorithm. )
The number of steps depends only on the algorithm chosen and the connec- !

tivity of the grid (i.e. how the nodes are interconnected) and is independent
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of the values of the coupling coeflicients or solution. Iterative matrix solu-
tion techniques have a deterministic number of steps for one pass (iteration)
through the algorithm, but several or many iterations of the algorithm must
be made in order to obtain an accurate solution, thus the total number of
steps required is non-deterministic. In particular, the number of iterations
depends on the values of the coupling coeflicients, the values of the solution,
and the accuracy of solution desired.

Typically, the number of operations (multiplies and adds) for a dircct
solution is significantly larger than for a single pass through an iterative
solution. As the number of iterations increases, however, the total number of
operations required for a solution using an iterative algorithm may surpass
that required for a direct solution, thus there is a break-even point where one
method becomes more efficient than the other. Unfortunately, locating the

break-even point is more of an art than a science.

4.1.1 Poisson’s IL’quation

As mentioned in Chapter 3, the cocflicient matrix for Poisson’s equation
is symmetric anc vositive definite. The symmetry may be exploited to reduce
cocflicient storage and operation count. The positive definite characteristic
is required for convergence of some of the iterative techniques.

Of the direet solution methods, LU decomposition [1.2] is the most
common. Based on Gaussian elimination, it may be used to solve full or
sparse matrix cquations. Sparse LU decomposition merely ignores the zero
entries in the cocflicient mmatrix and, in this sense; may be considered a “brute
force” method. The coeflicient matrix, M, is decomposed into the product

of a lower triangular matrix L and an upper triangular matvix {7 such that
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M = LU. The matrix equation LUZ = ¥ is then casily solved by using

-

forward substitution on L@ = 3 and backward substitution on UZ = w.

The advantages of this method are its flexibility and stability. It can
be used on literally any grid, with any discretization, and with almost any
non-singular coeflicient values. Since the PISCIES program was written in
order to study grid, discretization, various device types, and various regions
of operation, this flexibility and stability was extremely desireable. The
disadvantages of LU decomposition are that it requires large amounts of
storage and has a high operation count for large grids. The large storage
arises from the fact that the L and U matrices both have more non-zero entries
than the coeflicient matrix A/, a condition known as fill. This alzo influences
the operation count which is on the order of N?, (written as O(.N'?)), where

N is the number of nodes in the grid.

The second direct solution method of interest is the l'ast Fourier
Transform (FFT) method as applied to the solution of Poisson’s cquation by
Hockney [4.3] for plasma physics computations. It is quite the opposite of LU/
decomposition in the sense that it has small storage requirements and a low
operation count, but is very inflexible in terms of grid or device type. The
FI'T mecthod demands grids similar to those of Figures 2.01bh or 2.01d  that
is, the horizontal grid spacing must be uniform along any given line and the
number of nodes along that line should be a power of two. The method is
based on the orthogonality of FFourier harmonices - il a function is an electros-
tatic potential solution of Poisson’s equation for a given charge distribution,
then each Fourier harmonic of the function is a solution of Poisson’s equa-
tion for the corresponding harmonic of the charge distribution. The method
works most efliciently il the T'ourier analysis is performed in one dimension

only which is normally the lateral direction for semiconductor devices.
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Briefly, the method may be developed as follows. Poisson’s equation in

two dimensions with constant permittivity may be written as

0%y(z,y)  9%Y(z,y)

_ _p=y)
az?  dyr € (1.1)

The potential and charge density may be represented by their Fourier expan-

sions in the = direction as

Blay) = 3wk (y)etrres! (4.2a)
and ¢

p(z,y) = Z pk(y)eiz"kI/l (1.2h)
k

where ©v*(y) and p*(y) are the amplitudes of the &** harmonics, and [ is
the width of the solution region. Orthogonality principles dictate that cach

harmonic must independently satisfy Poisson’s equation, thus

(4.3)

O uMy) (27K ey )
Sl (B e = 1,
In the discrete problens there are only as many harmonics as there arc niodes
in the z direction along the grid line, so for an m by n grid the problem
has been reduced from a two-dimensional matrix cquation of order N (where
N = mn) to n one-dimensional matrix equations of order m. Since the
matrix equations arc onc-dimensional, the cocflicient matrix is tridiagonal
and very efficient solution methods can be used. The total operation count
is O(N Inm).

There are scveral disadvantages to the use of this method. One is the
strict requirement for a rectangular grid with uniform horizontal grid spac-

ing. Another is the requirement that permittivity be constant in the lateral

direction, limiting its application to devices with planar material interfaces
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and surfaces. The inclusion of electrodes within the device also causes a

problem due to the non-lincarity of the equation when carrier statistics are
included. FEinally, the method solves the Poisson’s equation, but cannot be
extended to the Newton-step form of the equation as described in Chapter 3.
The linearization term resulting from the Boltzmann dependence of charge
on potential re-introduces the spacial coupling of the equations which the
FFT method eliminated. It is possible to use the FI'T method on sub-regions
of the device and then couple these regions together using an iterative tech-
nique. This makes it possible to simulate more complex device structures,
but some of the advantages of a direct method are lost. A version of the FFT

method is used in the CUPID program [4.4] developed by J. I'rey.

Of the several iterative techniques for solving the matrix equations, the
most commonly used is successive overrelaxation (SOR)[4.5] or a variant, suc-
cessive block overrelaxation (SBOR) usually implemented as successive line
overrelaxation (SLOR). These methods have been well analyzed in the litera-
ture [4.6, 4.7], so they will be discussed only briefly here. Theoretical analysis
of the SOR and SBOR mecthods has concentrated on rectangular grids and
much has been written on the choice of optimum relaxation paramter values.
Although the SOR techniques are applicable to any type of grid, the optimum
relaxation parameter value is not easily obtained for non-rectangular grids,

so the convergence rate of the method suffers.

Theoretically, the operation count of SOR is O(N3/2) but this rate
is rarely obscrved in practice since the number of iterations is sensitive to
the accuracy of the initial guess of the solution and to the values of the
coupling cocfficients. The convergence rate depends on the cigenvalues of
an iteration matrix derived from the cocfficient matrix. A necessary and

suflicient conditiow. for convergence is that the largest cigenvalue must be less
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than onc. This ccndition is guaranteed if the coefficient matrix is positive
definite (as it is for the discretization of Poisson’s equation as discussed in

Chapter 3.) A modificd SOR method is used in the TWIST program [4.8].

In SOR, the solution is updated for each grid point independently and
in succession based on current values of the solution at neighboring points.
In SLOR, the solution for an entire line of points is computed simultaneously
based on the values of the solution at points adjacent to this line. This
has the advantage of providing a consistent solution to the equation along
a line of points instead of at only one point. As a result, convergence is
generally obtained with fewer iterations. The disadvantage is that one must
solve a sct of simultancous equations for each line. The disadvantage is not
great, however, since very efficient solution techniques exist for solving the
tridiagonal matrix equations which result. Thus there is generally a net
~decrease in the amount of work required for convergence over simple SOR.
Theoretically, the operation count is O(Nm) where m is the number of lines

in the iteration.

Use of SLOR normually limits one to a rectangular grid since the iteration
is done on a linc by line basis. (There is nothing to prevent selection of ser-
pentine “lines” in an irregular triangular grid; however, there is a penalty in
the computational overhead required to access these 1i 1es and the convergence
properties of such a method are unknown.) For IGFET simulations on a rec-
tangular grid, the lines chosen are typically vertical lines normal to the gate
since the potentials are more strongly varying in this dircction than in the
lateral direction. One is, in effect, solving several one-dimensional problems
side-by-side and coupling them together with the iteration. When lateral
potential variations become large, alternating between use of the horizontal

and the vertieal lines may provide some increase in convergence rate; however,
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the increase in computational overhead offsets most of the advantage. SLOR

is used in the GEMINI program [4.9).

Another iterative method commonly used in semiconductor device
analysis is Stone’s method [4.10] also known as the Strongly Implicit
Procedure (SIP). It is one of scveral iterative procedures based on
modification of LU decomposition to reduce the fill problem addressed earlier.
In SIP, an L and U matrix are computed such that LU = M + IV where both
L and U have non-zero elements only where M has non-zero clements, thus
there is no fili. The elements of L and U are very easily computed from the
elements of M. The matrix /2 has the same non-zero structurc as A except
for two additional non-zero diagonals. The combination M + I¢ is such that

the iteration

(M + E)z"*! = (M + E)i" ~ (Mi™ ~7) 4.4

converges rapidly to the proper solution where Z" is the estimate of the
solution vector at the n'* iteration.

In computing the elements of L and U, an ileration paramecter between
zero and one is uscd to accclerate the convergence of the algorithm. The
choice of this paramecter is critical since too large a value will result in diver-
gence and too small a value will result in slow convergence. Typically, this
paramter is cycled through a range of values in order to insure an adequate
degree of stability while maintaining a good convergence rate. For problems
of interest, choosing an optimum sct of paramecter values is very diflicult
so conservative estimates arc made yiclding sub-optimum convergence. The
operation count for this method is O(N In N).

The method was developed for solving equations on a two-dimensional
rectangular grid; however, it is extendable to threc-dimensional grids and to

1multi-variable problems. The principal requirement is that the coeflicient
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matrix have a highly regular banded structure. This limits the grids to

rectangular, rectangular based triangular, or cubic structures. Actually, it
is the highly regular connectivity of the grid that is important, so that the
grids may be distorted as long as they retain their regular connectivity. The

SIP method is used in the CADDET program [4.11].

Another method based on modification of LU decomposition is the
Incomplete Cholesky—Conjugate Gradient (ICCG) method [4.12]. The con-
jugate gradient method {4.13] begins with an estimate of the solution vec-
tor and iteratively improves this estimate by converging to the exact solu-
tion along a set of orthogonal error vectors. Thus, with infinite preci-
sion arithmetic, the exact solution would be obtained in IV iterations since
N orthogonal vectors completely span the solution space. In fact, if the
malrix M has only R distinct cigenvalues, then the algorithm must con-
verge in only [? iterations. Finite precision arithmnetic will resull in slower
convergence, but since exact solutions arc generally not required, sufficient
accuracy will normally be achieved in the number of iterations described
above. Unfortunately, the cocflicient matrix of Poisson’s equation typically
has widely spread and uniformly distributed cigenvalues so that the full iV
iterations are required. The incomplete Cholesky decomposition algorithm,
however, provides a method of transforming the cocllicient matrix into an
approximation of the identity matrix. The eigenvalues of this approximate
identity matrix are highly degenerate so only a few are distinet. As a result,
the conjugate gradient method converges very raptdly when used with the

transformed coeflicient matrix.

For a symumetric, positive definite matrix (as is the discretized Poisson
coeflicient matrix) an LLT decomposition may be obtained instead of an LU

decomposition where LT is the transpose of L. This is the Cholesky decom-
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position, LLT = M. This decomposition results in the same fill problem
as does LU decomposition; however, the incomplete Cholesky decomposition
avoids this fill by simply zeroing out all element locations in L which are zero
in M so that L retains the sparscness of M. Since the elements of L are
computed recursively, the zeroed elements influence the computation of later

elements. The result is a relation

LIT =M+ E 4.

[S1]

much like that obtained for SIP. Pre- and post-multiplying by inverses yields
LMY ' =T1-L71E(LT) L. 4.6

If the error matrix term on the right hand side is small, then the left hand
side is approximatcly the identity matrix and may be used in the conjugate
gradient algorithm for rapid convergence. Physically, M~! (the Greens
function) represents the coupling between a node and its neighbors. Ignoring
fill in the L matrix is effectively neglecting the Greens function coupling to
the distant (non-adjacent) neighbors of a node.

The number of operations per iteration of this method is comparable
to that of SBOR or SIP; however, the rapid convergence (especially for stift
problems) often resulls in significantly less total work. The method does
not require any particular matrix structurc so that any type of rectangular
or triangular grid may be used. The author knows of no device simulation

program currently employing the ICCG method.

4.1.2 Continuity Equation

The continuity equation, as discretized in Chapter 3, does not yicld a

symmetric or positive definite matrix. As a result; some of the matrix solution
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algorithms discussed in conjunction with the solution of Poisson’s equation
cannot be applied to the solution of the continuity equation. Since no strong
statement may be made concerning the cigenvalues of the continuity equation
coeflicient matrix, the SOR and SBOR methods may converge very slowly
or even diverge for some conditions. The FFT method is also not applicable
because the Scharfetter-Gummel discretization results in a collection of node-
to-node differential equations for the transport equation rather than a single
global differential equation.

LU decomposition, on the other hand, is suitable for use on the con-
tinuity equation and is used in the PISCES program. No instabilities have
been observed in using this method. Both the SIP and ICCG methods also
appear suitable; however, a modified form of the ICCG method is required
since the coellicient matrix is not symmetric. For asymmetric matrices, the
~incomplete Cholesky decomposition must be replaced by an incomplete LU
decomposition, where the incomplete LU decomposition algorithm is fully

analogous to that for the incomplete Cholesky decomposition.

4.1.3 Renumbering Algorithms

The total number of operations and data storage required for a matrix
solution using LIJ decomposition is dependent not only on the number of
nodes in the grid and how they arce interconnected; but also on how the
nodes are numbered. Consider, for exauple, the rectangular and rectangualar-
based triangular grids of IMigures 2.0t¢ and 2.01¢. IF the nodes in these grids
are numbered from top to bottom along the left-hand column of m nodes
and proceeding column by column from left to right along the n columns,
then the structure of the coeflicient matrices will appear as in Figures 1.1a

and 4.1b. The bandwidths of the coeflicient matrices are approximately 20,
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(a)

Fig. 4.1. Structure of coefficient matrix for: (a) rectangular grid, (b) rectan-
gular based triangular grid. The dashed lines represent partially
filled matrix diagonals resulting from the choice of the / or \ rec-
tangle diagonals for subdivision into triangles.

Since the fill associated with LU decomposition will occur totally within the
bandwidth of the matrix, the numbering of a rectangularly conneeted grid
should proceed in the direction of the fewest ncdes, by rows or by columns,
in order to minimize the bandwidth. -

Other more sophisticated grid numbering schemes exist including the
method of nested disscction published by J. A. George [4.14]. Using this
ordering, the operation count for LU decomposition nay be reduced from
O(N?) to O(Nn) and the needed storage from O(Nn) to O(N1nn). An
example of this ordering is shown for a 7 by 7 rectangular grid in IMigure
4.2, Iigure 4.2a shows the partitioning of the grid all nodes labeled 1 are
numbered first followed by those labeled 2 aud then 3. Figure 4.2b shows the

actual numbering with the resulting matrix structure shown in Figure 4.3,
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1213121 119 5 44 9 29 13
2223222 17 20 18 45 27 30 28
1213121 221 6 46 10 31 14
3333333 37 38 39 40 41 42 43
1213121 324 7 47 11 34 15
2223222 22 25 23 48 32 35 33
1213121 4 26 8 49 12 36 16

Fig. 4.2. Nested dissection numbering scheme for a 7 by 7 grid. Part (a)
shows the partitioning and part (b) the actual numbering of the
grid.

Although the method was developed for rectangular grids, it provides
similar benefits for the rectangular-based triangular grids used in PISCES.
Using the same 7 by 7 grid and numbering as in Figure 4.2 but subdividing
the grid into triangles, the matrix structure of I'igure 4.4 results. The struc-
ture is essentially the same as that of Figure 4.3 and results in comparable
improvements in operation count and storage.

The numbering scheme for nested dissection works perfectly only for
square grids (i.e. m = n) and only when m = 2! — 1 where [ is an integer,
such as 7 by 7, 15 by 15, or 31 by 3! node grids. For all other grids,
slight perturbations in the numbering are required in order to achieve the
same general pattern over the grid, thus there are many possible numbering
patterns for any given grid. Several of these nested dissection numbering
schemes were attempted for a 323 node (17 by 19) PISCES grid. Table 1.1
shows the number of non-zero entries in the L and U matrices for three of

these numberings plus the normal column numbering.
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X X X
X | S X X
X X X X
X X X
H XX X
X X X X X
X XX X X
X X X X
X X X X
X X X L X
X X X X X
X X X X
13 XX
X X X X
X XX X
X X X
X X X X
XX X X X
X X XX
XX XXX
X X XX X
XX X X
XX X X X
X X XX X
XXXxxx
X X XX
XX X X X
XX X X
X X X X
xXx xxx
X X X X X
XX X X X
XX X X
X X XX X
XXX xx
X X XX
X X XX
3 X XXX
X X XXX
X XX XX
X x X x X
X X XXX
X X X X
X * XX
X X X xx
X X X X X
X X X X X
X X X XX
X X X X

Fig. 4.3. Coeflicient matrix structure for the nested dissection of Migure 1.2
on a rectangular grid.

The symmelric numbering is a perfectly symmetric dissection about the
vertical and horizontal eenterlines of the grid. The aqulomatic numbering is
roughly the same but not as symmetric. 1t is generated by an algorithm
developed by 1. S. Duffl [4.15] and modified by Prof. R. J. Lomax of the
University of Michigan. The ftruncated numbering is simply a corner of a
perfect dissection; that is, beginuing at the upper-left-hand corner node, the

perfect. dissection pattern is followed horizontally and vertically until running
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X X X
x x XX x J
X X X XX b
X X XX
X XXX X
X X X X X X X
X XXX X X 4 4
X X X XX
X X X X x
X X XX XX H
X X X XX X X
X X X X X
b XXX
X X X XX {
X XXX X
X X x 1
X X X X X
XX X XX X X
X X X XX
X X XXX XX
X X X X X X X
XX X XX
XX X X X X X
X X X X x X X
X X XXX XX
X X X X X
XX X XX XX
X X X X X
X X X X X
X X XX XXX
X X X X X XX
X X X X X XX
X X X X X
X X X X X X X
X X XXX XX
X X X XX
X X X X X
X X X X Xxx
X X X xXxx X
X X X XX XX
XX X X x X X
X X X X X X X
XX X X x
X X X XX
X X X X xXxx
X ) X x X X X
X X X XX XX
X X X X X XX
X X X X x

Fig. 4.4. Coecflicient matrix structure for the nested dissection of Figure 4.2
on a rectangular based triangular grid.

out of grid. The results show that the symmetric numbering scheme has
the greatest reduction in storage (2073) followed closely by the automatic
nuinbering. The truncated numbering results in an increasc in storage. Note
that the original coefficient matrix contains only 2223 non-zcro entries while
the combined L and U matrices of the best numbering contain 6732, This
difference is the fill generated in the decomposition process.

A decrease in storage implies a decrease in the number of operations
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Table 4.1

Nested Dissection Efliciencies

Numbering L+U Storage | Solution Time
Scheme (#} (sec)
Normal 8308 2.0
Symmetric N. D. 6732 1.8
Automatic N. D. 6948 1.9
Truncated N. D. 8554 2.9

323 Node grid with coefficient matrix
storage = 2223 on DEC~10 computer.

required since fewer fill elements are computed. This is, in fact, the case as
can be seen in the scconds-per-solution column of Table 4.1. Note that this
table of data was obtained on a preliminary version of PISCES running on
a large time-share computer so the execution times are somewhat biased by
load variations. Additional timing comparisons were obtained on a 525 node
(21 by 25) grid. These results are summarized in Table 4.2 and show that the
improvements in storage and solution time generally agree with that predicted
by theory and :'so that the improvements are greater for larger grids. It
appears that the nested dissection method provides as much improvement
for the rectangular based triangular grids of PISCES as for the reetangular
grids for which it was developed.

There is one subtle drawback to the use of nested dissection for moderate
grid sizes. Table 4.3 shows the average matrix solution time for PISCIS on
the IP?-1000[" for three different conditions - scalar arithmetic, veetor arith-

metic and vector arithmetic with dissection. The PISCES program uses a
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Table 4.2

Nested Dissection Efficiencies versus Grid Size

L+U Storage Solution Time (sec)
Grid Size | Normal | Dissected | Ratio | Normal | Dissected | Ratio .
323 8308 6948 .84 2.0 1.9 .96
525 20924 12900 .62 5.8 3.9 .66
Ratio 2.5 1.9 2.9 2.0
L_Theor‘y 2.1 1.8 2.7 2.1

matrix equation solution package cntitled Vectorized General Sparsity algo-

rithms (VEGES) (4.16] which puts all vectorizable steps in the LU decom-

- position process into vector operation form. On truc vector architecture com-

puters, significant time savings can be realized by exploiting the vectorizable
operations; however, even on non-vector machines (such as the HP-10001")
some savings can be achieved with microcoded vector instructions. In Table
4.3, the scalar version . .ne program uses only scalar operations while the
vector version uses the Vector Instruction Set of the T1’-1000I° computer.
The vector version shows a factor of three immprovement in solution time over
the scalar version. When nested dissection is added to the vectorized version,
however, the solution time increases. This increase is due to a reduction
in the average vector length caused by the nested dissection renumbering.
Decpending on the computer, operations on short vectors can take longer
than equivalent scalar operations due to the overhead associated with vector
operation startup. The point of diminishing returns for vector versus scalar

operation depends solely on the computer being used. As grid size increases,
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Table 4.3

Nested Dissection Effect on Vector Arithmetic

Solution Time
Conditions (sec)
Scalar 18
Vector 6
Vector+
Dissection 8

HP-1000F Computer

however, nested dissection provides a net solution time reduction in spite of
vector shortening. The PISCIES program contains automatic nested dissec-
tion renumbering as a user controlled option.

Other renumbering schemes were also attempted including various forms
of diagonal numbering and clustered numbering. None of these methods
showed any significant reduction in storage: in fact, most showed significant

increases.

4.2 Solution of Coupled Fquations

This section addresses possible ways it which the coupled ecquations,
Poisson and continuity, can be solved so that each is consistent with the other.
Factors affecting the degree of coupling, factors influencing the convergence

rates of iterative methods and ways of accelerating convergence are ~overed.
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4.2.1 Solution Methods

Figure 4.5 shows flow charts of the two principal approaches to solv-
ing the coupled equations —the simultancous method and the alternating (or
Gummels) method. The comparison between thesc two methods is some-
what analogous to the comparison of direct versus iterative matrix solution
methods. The alternating method takes less work per pass but may require
many passes and thus more work for a consistent solution than the simul-
tancous method.

The simultaneous method involves appending the two matrix equations
together to form a single matrix equation which is twice as large.! In addition,
the partial derivatives of all combinations of potential and carrier concentra-
tion for adjacent nodes must be included. This doubles the number of rows
and approximately doubles the number of non-zero entries per row of the
matrix since the carrier concentration at eaclh node is coupled not only to
the carrier concentrations of each adjacent node, but also to the potentials.
The result is a matrix equation with nearly four times the number of non-
zero entries as either coeflicient matrix alone, and more than four times as
many operations per solution. This rapid multiplication of ¢ffort is prohibi-
tive for grids of any practical size. Additionally, the computation of the par-
tial derivatives becomes more difficult as higher order physical phenomena
such as field dependent mobility arc introduced. Tor these reasons, most
device simulation program designers have shunned the simultancous method;
however, some insist that simultancous solutions are imperative for certain

bias conditions [4.17].

or two-carrier simulation, both continuity equation matrices would be ap-
pended resulting in a matrix three times as large.
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SIMULTANEOUS ALTERNATING
INITIAL INITIAL
GUESS GUESS
' !
POISSON »
CONTINUITY POISSON
NO‘ NO
YES YES
SOLUTION CONTINUITY
NO
YES
SOLUTION

IMig. 4.5, Algorithm flow of simultancous and alternating methods for solu-
tion of the coupled equations.

The alternating method of Gumumel! [1.18] is the most commonly used
method for obtaining consistent solutions to the Poisson and continuity equa-
tions. As illustrated in the flow chart ol IMigure 4.5, beginning with an initial
guess of potentials and carrier concentrations, the Poisson equation is solved
for node potentials. The carrier concentrations are updated based on the new
potentials and appropriate carrier statistics (Boltzmann or Fermi-Dirac) and
the Poisson cquation is solved again. This procedure is repeated until the

potential change is below some convergence eriteria limit. This is the inner
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loop of the flow chart of IFigure 4.5b.

Implicit in the updating of carrier concentrations based on potential
changes and carrier statistics is the assumption of a fixed quasi-Fermi level.
In fact, the quasi-Fermi level is an unknown which must be determined.
This is done implicitly in the outer loop by solving the continuity equation
and updating the carrier concentrations without changing the potentials.
These new carrier concentrations require that the Poisson equation be solved
again so the algorithm loops back to the top of the flow chart. Eventually,
potentials and carrier concentrations converge and are consistent with both
the Poisson and continuity equations.

The principal advantage of the alternating mecthod is that less work
is expended on each pass through the outer loop than in the simultancous
method. A significant disadvantage, however, is that the convergence rate
of the method is dependent on the device operating conditions and may be
very slow. In the simulations run on the PISCISS program, for example, the
number of outer loop iterations required for convergence without acceleration
varied from one to sixty depending on the device biasing conditions. The
reduction of this large number of iterations was a major thrust of the present

work.

4.2.2 Convergence Acceleration for the Alternating Method

Table 4.4 shows a typical convergence pattern for a MOSFET biased
below threshold. The left hand column is the iteration count of the outer
loop of the alternating method, the center column is the error measure for
cach iteration of the inner loop (Newton iteration on Poisson’s equation), and
the right hand column is the error measure for cach iteration of the outer

loop. The inner loop error measure is the average of the absolute values (the
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Table 4.4

Subthreshold Convergence

Quter Inner Outer
Loop Loop Ltaap
Count Error Error
3.7€E-4
5.8E-12
1 3.7E-4
1.5E-1
1.4E-2
1.7E-3
3.4E-4
1.3E-5
3.3E-8
2 1.4E-2
1.2€-12
3 1.2E-12
Total 9 3

Total matrix solutions = 12
Gate = .5V, Drain = .01V -

one norm of numerical analysis) of the incremental potentials resulting from
the Poisson solution. The outer loop error measure is the one norm of the
net change in the node potentials from one pass through the outer loop to
the next.

Analyzing the convergence of Table 4.4, on the first pass through the
outer loop, Poisson’s equation converges in two iterations. The continuity
equation solution, however, alters the carrier concentrations and results in
six Poisson iterations on the sccond pass through the outer loop. On the
third pass, only one Poisson solution is required and the change in potential is
extremely small indicating that the algorithm has converged. Twelve matrix
solutions are required for this siimulation, ninc for Poisson and three for

continuity. This rapid convergence is due to the very weak coupling between
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the Poisson and continuily equations. When a MOSFET is biased below
threshold, the dominant charge (besides boundary charge) is the space charge
of ionized impurities in the depletion regions. Since this charge is immobile,
the continuity equation has little effect and a Poisson solution is essentially
all that is required.

Another point worth noting in Table 4.4 is the convergence rate of the
inner loop. Newton’s method has quadratic convergence which means that
when the solution estimate is in the vicinity of the correct solution, the error
in the solution estimate will be squared with each iteration. This typc of
behavior is evident in the inner loop error measure shown in the table.

A different convergence pattern is seen in the MOSIFIET lincar region
simulation of Table 4.5. In this case, there is an inversion layer of free
carriers at the semiconductor surface resulting in stifl coupling between the
Poisson and continuity equations. Only pieces of the complete convergence
sequence arc shown, but it is clear that cach continuity solution alters the
carrier concentrations enough to negate the previous Poisson solution and
cause several more iterations of the inner loop. A tota! of 151 inner loop and
46 outer loop iterations are required. It is this behavior which undermines
the utility of the alternating method in device simulation. In the search for
ways to reduce the simulation time required for devices above threshold, four
technique. were derived which may be used to reduce this time by a factor

of three to four. These techniques are detailed in the following paragraphs.

4.2.2.1 Projection of the Initial Guess

The first convergence acceleration technique is the use of projection of
the initial guess from previous solutions. In the PISCES program, the first

bias condition solved for newly generated device grids is the flat band case.
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Table 4.5

Lincar Region Convergence

Quter Inner Quter
Loop Loop Loop
Count Error Error
1.0E-2
2.8E-3
2.1E-3
6.1E-4
1.1E-4
4.2E-6
1 6.9E-3
4 .5E-2
2.6E-2
1.3E-2
2.3E-3
1.1E-3
3.5E-4
4.3E-5
2 2.2€-2
16 2.8E-3
3.3E-3
6.6E-4
6.6E-5
17 2.5E-3
23 - 1.1€E-3
1.0€-3
9.0E-5
24 9.4F-4
45 1.0E-4
8.3E-5
46 8.3E-5
Total 151 46

Total)l matrix solutions = 197
Gate = 2.7V, Drain = 1.0V
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The initial guess for this case is the charge neutral condition. When not using
the projection technique, the initial guess for every simulation thereafter is
the previous solution. If a scquence of bias steps is being simulated, for
example, each solution is used as the initial guess for the next bias. The
result 1s slow initial convergence and occasional instability if too large a bias
step is attempted.

The projection method involves extrapolating the initial guess for the
new bias condition based on the solutions at two previous bias conditions.
Only one contact bias may be varying between the two previous bis-es and
the new bias. The assumption is that the potentials and quasi-I'crmi levels
for each node will vary linearly with the bias. Given two solution files for
biases of V; and Vo and a new bias of V3, an extrapolation factor is defined

as

wo ViV (1.7)

The projected initial guess for potential and quasi-Fermi level at the new bias,

¥3 and &4, is then computed for every node in the device by the relations

¥y = ¥z + oty — ¥1) (1.8)

and

$3 = @2 + oy - Py). (1.9)

It is easily shown that these relations lead to an extrapolation of the eleetron

concentration (assuming Boltzimann statisties) of

(™Y .
3 'e\m) . (4.10)

These relations provide very good initial guesses. In charge neutral

regions, the estimates are very accurate. [n depletion regions the estimates
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arc not as good, but since there is little mobile charge there the coupling
between Poisson’s equation and the continuity equation is weak so that those
errors which do exist are quickly corrected by Poisson solutions. Only at
depletion edges and inversion layers do the estimates produce significant
errors, but even there the estimates provide a smooth stable initial guess
with excellent convergence probability. The combination of these properties
serve not only to speed couvergence but also to greatly increase the allowable
bias step size. Another advantage of this method is its simplicity since all
regions of a device are processed identically.

The projection method provides the greatest convergence acceleration
when stepping the drain bias of devices in saturation, typically reducing the
number of iterations by a factor of two. It is nearly as effective in the linear
region but tends to lose some of its effectiveness in projecting initial gucsses
through the transition from linear to saturation. For subthreshold bias
conditions the method does not significantly reduce the number of iterations;
however it does allow larger bias steps to be taken without loss of stable

convergence.

4.2.2.2 Single Poisson’s Equation Iteration

The second convergence acceleration technique is the use of a single
Poisson solution per outer loop iteration. An inspection of Table 1.5 reveals
that each continuity equation solution severely alters the previous Poisson
solution as indicated by the large inuer loop error seen after cach outer loop
iteration. In short, the accurate Poisson solution achieved through several
iterations of the inner loop is unnceessary. By performing only one inner
loop iteration on each pass through the outer loop, the number of outer loop

iterations increases by roughly 209 but the total number of matrix solutions
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Fig. 1.6. Algorithm flow of the single Poisson acceleration scheme showing
elimination of the inner loop.

decreases by roughly 4097, Figure 4.6 shows the revised flow chart with the
climination of the inner loop. This technique applies only to the linear and
saturation bias conditions. Its use in subthreshold simulations will generally
increase the total number of matrix solutions required.

The success and stability of this method provokes the question of whether
this merging of the two iterative loops could be taken a step further when
iterative methods are used for the matrix equation solutions. That is, rather

than fully converging on an iterative solution to the Poisson matrix equation
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1 and then fully converging on a solution to the continuity matrix equation,
§

perhaps the program should alternate between a few iterations of each matrix
solution. This possibility is worthy of additional consideration, but was not

pursued in this work.

4.2.2.3 Overrclaxation

The third convergence acceleration technique is the use of a form of over-
relazation. This technique must be used only with the single Poisson iteration
deseribed above. The method was developed by observing the details of the
convergence of simulations using projection and a single Poisson solution.
Figure 1.7 shows the potential and quasi-Fermi potential convergence of a
node in the channel region of a MOSFIET biased in saturation. The crror is
plotted versus the outer loop iteration count, thus each iteration represents
two matrix solutions. Miner detail of the potential and quasi-1Ilermi potential
convergenee is shown in Figure 1.8 along with the eleetron concentration for
the same node and the total drain current. Note that the latter two lag by
about 20 iterations.

The monotonic nature of the potential convergence for this node over the
first 10 to 20 iterations is typical of nodes observed in other regions of the
device. Since the potential inerements are nearly constant for every iteration,
it appears that faster convergence can be obtained by merely inereasing the
stze of the potential inerements. This is somewhat analogous to overrelaxation
in iterative matrix solution methods. When the veetor of potential inerements
out of the Poisson solution is multiplied by a factor greater than onc before
being added to the previous potentials, faster convergencee does indeed result.

Figure 1.9 shows the improvement in drain current convergence obtained

using overrelaxation. A factor of 1.0 means no overrelaxation and 1.5 or 1.9
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I'ig. 4.8. Finer detail of the convergence shown in Figure 4.7 including node
clectron concentration convergence and total drain current conver-

gence.
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Fig. 4.9. Drain current convergence acceleration using overrelaxation.

mean that the Poisson solution vector is multiplied by 1.5 or 1.9 each time
before updating the potentials. TMactors of two or larger cause immediate
instability in the iterations, suggesting a similarity between this method and
the successive overrelaxation matrix iterative technique.

The PISCES program uses o variable overrelaxation factor which changes
every three iterations, typically starting at a large value and then deereas-
ing. This factor is computed using an algorithm published by Carré [1.19];
however, fixed factors between 1.5 and 1.9 generally work cqually as well,
The overrelaxation technique can be used only when using the single Poisson
method also, thus it is applicable only to the lincar and saturation regions of

operation.

4.2.2.1 Linearization Term Reduction

The final convergence acceleration technique is reduetion of the lincariza-

tion term in Poisson’s equation. This method is closcly related to the over-
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relaxation method and their use is mutually exclusive. The basis for this
method can be derived by inspecting Figure 4.7 and observing that the quasi-
Fermi potential closely tracks the potential as they both converge. After each
update of the potential by a Poisson solution, the continuity equation results
in a nearly identical step in the quasi-Fermi potential. This violates one of
the assumptions made in the discretization of Poisson’s equation performed
in Chapter 3. In that discretization, the linearization of the carrier statistics
was based on the assumption that the quasi-Fermi level would remain con-
stant as the potential changed resulting in a predictable change in electron
concentration. When using the single Poisson method, however, the quasi-
Fermi potential lollows the potential change at each iteration; as a result the
lincarizing term in the discretization should be made sinaller.

The Boltzimann carrier statistics assumed for this work are expressed for
electrons as

n = n;evVon)/Vr, (4.11)

The linearization of Poisson’s equation then uses the partial derivative

on n

= 1.12
however, if ¢,, tracks ¢, then in one iteration of the outer loop,

An n

= < 2 4.13

Ae <V (4.13)

Thus, more rapid convergence should be obtained if one uses a lincarization
of
on n

where the accelerating factor, a, has been empirically determined to lie in

the range .3 < « < .6.
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This technique is roughly equivalent to the overrelaxation technique
except that its effects are limited to regions of the device with high clectron
concentration. In low clectron concentration regions, the linearization term
is small and the Poisson solution values are unperturbed. In high eclectron
concentration regions, the lincarization term dominates and the size of the
update potential solution is increased by a factor of approximately 1/a.

Figure 4.10 shows the drain current convergence acceleration achieved
with this method. The normal unaccelerated case is obtained with a factor of
1.0. A factor of .5 is comparable to selective application of an overrclaxation
factor of 2.0 and is seen Lo reduce the number of iterations by about one
half. The third example shown used a factor which started at .2 for the first
iteration, and increased by .033 cach iteration until reaching .6 where it was
fixed. The initial convergence was very rapid but unstable causing a residual
ringing in the drain current even after the acceleration factor had moved
into the stable range (>.5) on the tenth iteration. The convergence rate in
this case was only marginally better than that obtained using a fixed value
of .5, but the rapid initial convergence obtainable from use of an unstable
acceleration factor value will gencrally result in a savings of a few iterations.
An acceleration factor starting at .3 and increasing by.01 each iteration until
reaching .6 is recommended.

As mentioned earlier, this method may be used interchangeably with
the overrelaxation method, but they cannot be used simultancously. The
performance of the two methods is nearly identical and no recommendations
are made as to the use of one over the other.

[t is important to note that Figures 4.9 and 4.10 show the drain current
error within a range of plus or minus .4%7. Drain current accuracies required

for device simulation are more typically 1.0°¢ and certainly not less then
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Fig. 4.10. Drain current convergence acceleration using reduction of the
[}
linearizing term.

0.19¢. Looking at the figures, these levels of convergence are achieved in 12
and 25 iterations respectively, thus the convergence to useful levels is guite
rapid when using the convergence acceleration techniques.

The convergence acceleration obtainable from combinations of these ac-
celeration methods on a MOSIPET operating in the saturation mode is ex-
hibited in Table 4.6. The left hand columnn shows the five drain blases at
which the simulations were run. The second column shows the number of
matrix solutions (Poisson plus continuity) required for convergence at each
drain bias with no acceleration. The total number required for all five biases
is shown at the bottom along with a ratio of the total number for cach column
to the total of the unaccelerated column. The third column shows the ac-
celeration achieved using projection alone. The fourth and {ifth columns show

the acceleration achieved using the single Poisson iterations alone and with

projection. The final colwmn shows the acceleration achieved by using all
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Table 4.6

Number of Matrix Solutions to Convergence

Acceleration Method

0verre1ax.'

Drain 1-Poisson 1-Poisson

Bias None Projection { 1-Poisson | Projection | Projection
1.5 189 98 120 74 68
2.0 188 110 86 84 68
2.5 183 103 88 84 48
3.0 183 78 &8 70 58
3.5 184 82 90 52 48
Total 927 471 472 364 290
Ratio 1.00 .51 .51 .39 .31

three: projection, single Poisson, and overrclaxation. Comparable data was
not taken for the lincarizing term reduction method, but results are quite
similar to the overrelaxation results.

The data in this table is slightly distorted in the conservative direction
due to the convergence criteria which was being used at the time it was
gathered. The itcerations were stopped when the change in drain current
from one iteration to the next beeamne relatively small. This was determined
later to be a poor criteria since it usually stopped on the peak of the drain ‘
current overshoot a local maximum of drain current error magnitude as seen
in Figures 4.9 and 4.10. Occasionally, however, the algorithm missed the
peak and stopped many iterations later resulting in a more tightly converged

solution. Typically, the algorithm stopped on the peak for slower converging
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methods but not on faster ones, thus the entries in the unaccelerated column
of Table 4.6 arc loosely converged while some of the entries in the remaining
columns are tightly converged. As a result, the net improvement ratio is
underestimated. The outer loop error norm as described earlier is a more
stable measure of convergence and is used in the present version of PISCLS.
A convergence criteria for this error norm of 1074 results in loose convergence
and 107° in tight convergence. Usc of this convergence criteria for all of
the data in Table 4.6 would show a total acceleration improvement ratio of

approximately .25,
4.2.3 Convergence Rate Sensitivity to Bias Conditions

The previous discussions have referred to the sensitivity of convergence
rate to the device region of operation. Figures 4.11 and 4.12 show this
sensitivity in the computation of I, /Ve and I /Vps characteristies for a
short channel IGFET using a 700 node grid. In both figures the drain
current is shown as a solid line and the total solution time per bias point as
dots, The solution time was measured on an HP-10001" minicomputer using
vecetor arithmetlic with cach matrix solution of the 700 node grid reqguiring
approximately 30 scconds. Note that the piecewise nature of the drain current
curves results from the large discrete bias steps.

Figure 4.11 shows the drain current for a drain bias »f .01V and a gate
bias at steps of .2V from sub-threshold to the linear region of operation.
Projection of the initial guess was the only convergence acceleration procedure
uscd for these simulations. The very small drain bias in these simulations
avoids the need for any other acceleration procedures. The solution times
are small for all bias points but increase slightly near threshold where the

device is changing from subthreshold to linear operating characteristics. This

93

e B



2 -6 ( 130

& -7t DRAIN CURRENT

on —
2 -8r 120 n
5 or 2
& -10 s
3 {10
O -1 SOLUTION TIME s
g -12 o ° ° o o o . =
0 g3 i - 1 1 1 1 1 1 0

6 .8 1.0 1.2 14 1.6 18 20 2.2 2.4

VG ( voits )

Fig. 4.11. Subthreshold and linear region simulation results at V5 = .01V

for .2V increments of V.

—~ 10 o - 30
a { o
5
o 8¢} (o] 17}
o w
E o 1205
~ 6| DRAIN CURRENT z
= =
4 o o it
w
[v'd 4 = O w
14 410 s
s | o) o =
(&) 2k -
Z SOLUTION TIME
L9
g o) I 1 1 X 0

o) 1 2 3 4 5

VDS {volts)

Fig. 4.12. Saturation region simulation results at Vg

ments of Vpg.

94

= 2V for OV incre-




increase is due to the errors incurred in projecting an initial guess in a region
where the device is changing modes of operation.

Figure 4.12 shows data for the same device with a gate bias of 2V
(well above threshold) and drain bias at .5V steps. The projection, single
Poisson, and lincarizing term reduction methods of convergence acceleration
were used for these simulations. The noticeable aspects of this data are the
large solution times required for drain biases at the knee of the curve and
the decrease in solution time as the drain bias increases. The first data
point shown on this figure is .5V and occurs in the transition region between
the linear and saturation modes of operation of the device, thus the lower
solution times required in the linear region are not shown. A small part of
the reduction in solution times as drain bias increases is the improvement in
accuracy of the projected initial guess, but the iteration output reveals that
this accounts for only a few iterations difference per bias point. The principal
difference is the rate of convergence. In the transition region it takes more
than ten iterations to reduce the error norm by one order of magnitude, but
in the saturation region it takes less than five. The cause of this performance
is unknown; although, it appears to be a characteristic of the convergence

acceleration schemes sincee it is not observed in unacceelerated simuiations.

Some added insight is provided by Figure 4.13 which shows the error in
surface potential at cach of the fir«t 18 iterations for a device with a 1.5 pm
gate length. Only the projection and single Poisson acceleration schemes
were used in this sirnulation. It is evident that the error is dominated by the
first harmonic in spacial frequency between the source and drain and that it
converges very slowly. Apparently the alternating method provides adequate
loeal coupling (adjacent nodes) for the Poisson and continuity cquations but

is less adequate globally, specifically from the source to the drain along




MR, | g

B

ERROR (mV)

DISTANCE (microns)

Fig. 4.13. Surface potential error at each iteration (of the first 18) for a
MOSPFET in saturation. The channel extends from approximately
75 pm to 175 pem.

the inversion channel. It would appear prudent to investigate methods of

supplementing this coupling across the length of the channel.

The approximate solution times for the various device operating regions
are summarized in Table 4.7, An average number of matrix solutions required
for convergence in each region is given along with the number of minutes

required for three different grid sizes.
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Table 4.7

Approximate Solution Times on HP-1000F

Minutes per Bias Point 1
Number
QOperating of Matrix 323 600 700 .
Region Solutions Nodes Nodes Nodes
Subthreshold 7 1.2 2.7 3.5
Linear 25 4.2 9.6 12.5
Transition 50 8.3 12.1 25.0
Deep Saturation 15 2.5 5.8 7.5

4.3 Summary

A varicety of direct and iterative matrix solution methods are presented
and their applicability to the Poisson and continuity equations arc discussed.
The advantages obtained from various grid renumtering schemes are also
discussed. The nested dissection renumbering is shown to provide significant
savings in both storage and solution time, especially for larger grids. These
improvements are tempered by the fact that the re-ordering results in shorter

vectors in the solution algorithm. The shorter vectors, in turn, slow down

the processing speeds available on modern vector computers.

Solution of the coupled system of equations is addressed and the tradeolls
of simultancous versus alternating solutions arc discussed. Convergence of
the alternating method without acceleration is analyzed and shown to be
prohibitively slow for IGF19Ts biased in the lincar and saturation modes. Four

convergence acceleration techniques are presented which, in eombination,
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increase the convergence rate by roughly a factor of four. These methods
involve computation of an improved initial guess, elimination of cxcessive
solutions of Poisson’s equation, overrelaxation of the potential updates, and
reduction of the Poisson linearization term.

The convergence rate is examined as a function of bias for operation
below threshold and operation above threshold with acecleration. Solutions
above threshold take roughly two to six times as long as subthreshold solu-
tions. Convergence is the slowest for devices biased in the transition region
between linear and saturation operation butl improves as the device is biased
deeper into saturation. The dominant electrostatic potential error observed
during convergence above threshold is a first harmonic in spacial frequency
between the source and drain at the surface.

The next chapter provides two application examples of the PISCES

program.
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Chapter 5

APPLICATIONS ' 1

This chapter covers two cxamples of applications of the PISCES pro-
gram. In the first example, an NMOS transistor with a channel implant Y
is simulated in the punchthrough region of operation using three diflerent
simulation programs —PISCES, GEMINI [5.1], and CADDET [5.2]. The
effects on punchthrough current of varying the source/drain junction depths
are also shown. The second example demonstrates the utility of the PISCIES
program in evaluating physical models. The field dependent mobility of field
effect devices 1s explored through use of a distance-from-the-surface mobility

variation.

5.1 MOSFET Punchthrough

A potential contour plot of the N-channel MOSFIT simulated for this

comparison is shown in Figure 5.1. The important device paramecters are:

simulation length 3.5 uym
simulation depth 5 pm
oxide thickness 500 A
channel length T pm
substrate doping 2 X 10'% ¢em™3
junction depth A4 pm
channel implant dose 3.4 X 10" cin?
channel implant depth A8 pom.
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Iig. 5.1. Equipotential contour plot of N-channel MOSFET with implanted
channel.

The planar oxide was used in order to accomodate the CADDET program
comparison.

Figure 5.2 shows the results of the punchthrough simulations using
PISCES, GEMINI, and CADDET. The drain bias was varied in one volt steps
from one to ten volts while holding the gate at —.5V. An analysis of equi-
potential contour plots would reveal that the punchthrough current path is at
the surface for Vpg < 7V and in the bulk for Vg > 7V. The .4 um source
and drain regions are modeled as Gaussian implants with the concentration
peak exactly at the semiconductor surface. The .45 jum junction depth device
source and drain have the same Gaussian shape but the peak is shifted .05 pm
below the semiconductor surface. Only PISCES was used to simulate the
.45 um junction device. The punchthrough current for this device exceeds

that of the .4 um device by as much as a factor of 50. This fifty-fold in-
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Fig. 5.2, MOSFET punchthrough characteristics using PISCES, GIENMINI,
and CADDLET. The current path in the .4 gm junction device is at

the semiconductor surface for biases below 7V and in the bulk for :
higher biases. The 15 gm junetion device results are from PISCLS
only.

crease in punchthrough current with a 1290 increase in junction depth is a
rather startling result and illustrates the utility of numerical simulation in
device design. This extreme sensitivity and similar sensitivities to junction
curvature and impurity gradicuts make anlvtical modeling of these effects
extremely diflicult.

The three simulation programs used to analyze the . um junetion depth
device agree quite well throughout the range of drain biases. The reason

for the diserepancy in the GENMINI solution »t Vg = 61" is unknown but

may be related to the shifting of the dominant punchthrough current path
from the surface to the bulk. The CADDET program shows a variation from

the other two at drain voltages above 8V, The largest variation between the
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three programs is approximately a factor of two. This is larger than one
would like but certainly sufficient for the accuracies typically achieved for
subthreshold device characteristics. Similar comparisons between PISCES
and CADDLIT for devices operating above threshold show excellent agreement
with variations typically less than 5. Note that GEMINI is applicable only
in the subtheshold and low-drain-bias linear regions of operation.

Inevitably, differences in results from the three programs can be traced to
differences in erid placement, unrcalistic physical assumpticens for the simu-
lated conditions, or loosely converyed solutions. The automatic grid genera-
tion of CADDET and the inflexibility of the rectangular grid oceasionally
result in poorly placed grid points. The limited number of allowed grid points
in PISCLES also may result in sub-optimum grid placement. The CADDET
assumption of a one-dimenstonal electrie field in the oxide and the GENINI
assumption of constant quasi-Fermi levels can cause difficulty if the deviee
structure or bias exceed valid ranges. Under-couverged solutions are par-
ticularly noticeable in CADDIET due to the solution methods and convergence
criteria used.

All of these programs are more lmited in accuracy by their models of
higher order physical phenomena, however, than by their numerical methods,
Accurate simulators must include models of phenomena such as veloeity
saturation, field and concentration dependent mobility, bandgap narrow-
ing, decenerate statisties, surface states, two-dimensional Linpurity profiles,
Schottky barriers, ete. The himitation is not one of implementation, but
rather one of obtaining an accurate model. Much current controversy sur-
rounds such topies as bandgap narrowing and mobility models. The utility of

numerical simulation in investigating such models is displayed in the following
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5.2 Strong Inversion Mobility

The subject of channel mobility under strong inversion has had con-
siderable attention in recent years {5.3 5.5]. At issuc is the variation of sur-
face mobility with substrate doping, vertical electric field, crystal orientation,
substrate bias, and interface charge.

Device designers have traditionally used empirical relations for predict-
ing device performance based on the observ-d eflects of substrate bias and
impurity level on channel mobility. It was generaily understood that some
form ol scattering caused the mobility variations but that the effect= could be
parameterized in terms of the substrate bias or impurity levels, NMore recently,
it has become evident that the scattering occurs at the semicenductor-
insulator interface and that the shape of the inversion laycr charge profile is
correlated with the mobility variations, 7.¢. the mobility reduction 1= greatest
when the centroid of the inversion layer profile is nearest the surfoce. This
compression of the inversion layer at the surfacce is related to the magnitude
of the surface electric field, thus empirical models using the surface field as a
parameter have emerged [5.6]. The observed variations with substrate doping
and bias are caused by the difference in surface ficlds required for equivalent
inversion levels at the different substrate impurity levels and biases. Iven
better agreement between model and measurement over a wide range of sub-
strate conditions has been achicved with use of the “average” or effective ficld
in the inversion layer [5.5].

I'rom Gauss' law, the surface electrie field is given b
’ o

, F G
Es-——Ql— 21 (5.1)

Cs

while the effective field is given by
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where Qg is the inversion layer charger per unit area, @ g is the bulk depletion
charge per unit arca, and €, is the semiconductor permittivity. The current
belief is that phonon and surface roughness scattering mechanisms dominate
the room temperature surface mobility in strong inversion and phonon and
coulombic (interface and oxide charge) scattering in weak inversion; however,
the quantification of these effects is not well understood.

The point of the foregoing discussion is that the empirical and analyti-
cal models for surface mobility used by device designers and in circuit
simulation programs necessarily avoid handling the basic underlying physi-
cal mechanisms in order to obtain computationally manageable models.
Numerical simulation, on the other hand, can more easily accomodate the
underlying physics and thus can be used by device designers for more ac-
curate and operating-region-independent results, and by device physicis's for
studying the validity of their models. In this section, PISCES is used to
cevaluate a surface mobility model in which the mobility varies with distunce
from the surface.

A very long channel device was chosen for this study in order to minimize
the influence of the source and drain on the channel potential. The important

device parameters are:

oxide thickness 1000 A

channel length 50 pm

substrate doping 1.2 x 10'® ¢m™3
fixed iuterface charge 10! emm—2,

It is well known that the carrier mobility varies from its value in the

bulk to a lower value at or near the surface; however, the value of the surface
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mobility and the functional forin of the variation with distance are not known.
A. Gnidinger and H. Tally [5.7] have computed the thickness of inversion
layers to be on the order of 100A and have shown quantum mechanically that
the carrier density peaks at distances on the order of 25 A from the surface.
It is reasonable to assume that the variation with distance is monotonic, thus
the mobility model chesen is one in which the mobility decreases exponentially
with distance from the surface with charac!eristic length on the order of 25A.

Mathematically, it is expressed as

wly) = po — (o — pra)e™¥/° (5.3)

where gy, is the bulk mobility, ps is the mobility exactly at the surface, y
is the distance from the surface, and ¢ is the characteristic length of the
variation. Figure 5.3 shows the results of simulations with three different
values of the model parameters. In (a) there is no mobility variation with
depth and the classical straight line variation of Ip with Vi, is observed. In (b)
the mobility is 1000 em?/V-s in the bulk, 100 ¢em?/V-s at the surface and has
a characteristic length of 50 A. Tn (¢) the bulk mobility remains the same but
the surface mobility is reduced to 10 em?/V-s and the characteristic length
to 33 A. In order to accurately quantize these variations, the grid spacing
perpendicular to the surface is very small, starting at less than 10 . This
small spacing is somewhat restrictive since it consumes large numbers of grid
points and could cause numerical errors in the difference equations.

The reduced drain current for cases (b) and (¢) of Figure 5.3 refleets
the reduced channel mobility. The flattening out of the curves al higher
gate biases is characteristic of IGIFET’s and results from the crowding of the
inversion layer charge closer to the surface. Ifigure 5.1 shows the relation

between the Iy /Ve; curves, the field effeet mobility (ppp), and eflective
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Fig. 5.3. Rolloff of drain current with gate bias showing cffect of distance-
from-the-surace mobility model. The mobility is in em?/V-s and
yis in A,

mobility (p.ss). These arc expressed mathematically as

) (L/W)au
o= lim VT 5.4
Hel s ans"']"() q"vinu (L) )
and
L/Wg,.,
HEE — lim (—/~ )g - (5.5)

Vbs—0 | CoVps
where L and W oare the channel length and width, g4 and ¢,, are the drain
conductance and transconductance, ¢N;pn, is the total induced charge in the
channel per unit area, and Cj is the gate capacitance per unit arca. Note
from the figure that these two mobilities are cqual at the steepest part of the
curve. These relations are described by S.C. Sun [5.8] whose measurcments

are used for the comparisons in the remainder of this section.
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Fig. 5.4. Definition and relationship between effective mobility p, ;¢ and field
effect mobility ppp.

Figure 5.5 shows the comparison of simulation versus measured results
for the device described carlicr. The mobility model paramecters used are
po = 1286 cm?/V-s, p, = 400 cm?/V-s, and ¢ = 50 A. The bulk mobility
valuc is chosen based on the substrate impurity concentration. The solid
and dashed lines represent the simulated data for pes, and ppp respectively
and the cireles and squares the measured values. Although the simulated
and mcasured results arc offset, they have the same shape. Obviously, the
distance-from-the-surface mobility model has the proper effect on the effeetive
mobility although the functional form or parameter values of the model may
not be correct. It would be of interest to fit the two unknown parameters, g
and o, to additional measured results in order to determine the parameter
sensitivities to device fabrication and structure variations. The curve fitting

would be an empirical study; however, the parameters have a physical basis
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Fig. 5.5. Comparison of simulated and measured values of g and i
i Hefr Pl
with varying gate voltage.

and could shed light on mobility phenomena as opposed to analytical models
such as thosc used in circuit simulation program device models which have
no physical basis. This study is not attempted since it is not the intent of
this work to develop a new mobility model, but it is suggested as an area of
further rescarch.

The maximum value of mobility occurs at the point labelled g0, in
IFigure 5.5, Since this peak always occurs at a gate voltage just above
threshold, the surface is only weakly inverted. As substrate deping increases,
the <urface ficld required for the same degree of surface inversion also in-
creases resulting in more crowding of the inversion layer charge and thus lower
Homar- This reduction in maximum mobility with increased substrate doping
is seen in Figure 5.6. Both measured and simulated results are shown along

with the bulk mobility values for comparison. The simulated results were ob-
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Fig. 5.6. Comparison of simulated and measured values of g, sensitivity
to substrate doping.

tained at substrate dopings of 1.2 X 10" 1.2 X 108, and 1.2 < 10'7 em ™3,
The simulated results are comparable to the measured values but show a
steeper slope indicating that the surface mobility reduction effect is too strong
with the chosen parameters.

One of the principal points of this section is that numerical simulition
can be useful in the evaluation of physical models. Attempting to mateh the
measured data shown here and available elsewhere by modilving the mobility
model should provide additional insight into the characteristies of surface
inversion layer mobility. The other point is that the use of the most fun-
damental physical models possible results in the most powerful and versatile
device simulation programs. The relatively simple distance-from-the-surface
mobility model, for example, is easier to implement than an effective field
mobility reduction model and much more universal than substrate bias and

substrate doping mobility reduction models.
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5.3 Summary

Two examples of application of the PISCIES program are presented-—
punchthrough current simulations on an implanted channel NMQS transistor
and evaluation of a distance-from-the-surface mobility model. The PISCES,
GEMINI, and CADDET programns are compared for the punchthrough
simulations. Their results agree throughout the range of simulated biases.
Simulations also show that a 12% increase in source/drain junction depth
can result in a 50 fold increase in punchthrough current. Simulations using
the depth dependent mobility model indicate thiat such a model may be useful
for device simulation in licu of field dependent models. An exact form for the
model is not pursned but is suggested as an area of further research. The
effects of rnobility reduction with increased gate bias and increased substrate
doping are demonstrated. One disadvantage of tane depth dependent mebility
model is the need for very fine grid spacing normal to the surface.

The next chapter summarizes the conclusions and recommendations of

this work.
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Chapter 6

CONCLUSION

The two-dimensional structure of modern semiconductor devices demands
the use of two-dimensional numerical simulation in device design. The ap-
plication of analytical models simply cannot accurately account for the highly
two-dimensional irapurity profiles and potentials and their interaction.

All of the two-dimensional device simulation programs currently avail-
able are too restrictive to be of great service to device designers as witnessed
by the slow acceptance of the few commercially available device simulation
programs. Restrictions in allowable device structures, grid, computation
time, memory requirements, accuracy of physical models, and ease of user
interface are seen to some degree in all programs. Various aspects of these
limnitations have been addressed in this work through the development and
application of a device simulation program, PISCES. The program contains
somc of the same limitations but is extremely flexible and allows investigation

of many of the device simulation program restrictions.

6.1 Summary

The allocation of grid in various regions of a device has been addressed
in terms of grid type, grid density, device structures, and impurity profiles.
These analyses show that the densest grid is required in regions of high net
charge density, large gradients of net charge density or large gradients of

potential. The use of reflecting boundary conditions along the sides of the
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device is shown to require significant lateral extensions of the source and drain
in order to accurately represent the device potentials. Simulations have also
demonstrated the inadequacy of rectangular uniformly doped approximations
to the source/drain regions. Even a very coarse approximation to a Gaussian

source/drain profile is shown to provide very good results.

The application of finite difference discretization of Poisson’s equation
and the current continuity equation to an irregular triangular grid has been
presented including the special cases of ohtuse triangles. A more consistent
arca allocation scheme has been presented along with a simple technique for
avoiding negative coupling cocflicients in the Poisson discretization for obtuse
triangles. The quasi-two-dimensional discretization of the continuity equation
using the Scharfetter-Gummel algorithm is accompanied by a proof of the

non-existence of a fully two-dimensional form.

A variety of matrix solution techniques have been compared in terms
of their applicability to device simulation. The flexibility and stability of
the LU decomposition method are offset by the rapid growth of solution
time and memory requirements with grid size. The opposite can be said for
the iterative methods of SIP and [CCG which do not grow as rvapidly with
grid size but are more restrictive in grid type and sensitive to the matrix
coeflicients in solution time.

Svaluation of the LU decomposition method has shown that proper
numbering of the grid can result in time and memory savings. Numbering
a rectangularly connected grid in the shortest direction (Z.e. row or column)
minimizes the generation of non-zero matrix clements and thus reduces the
matrix equation solution time. A more exotic renumbering scheme, nested
disscction, is shown Lo reduce the solution time from O(N?) to O(N¥/?) and

storage requirements from ()(N:‘/z) to O(N Inn). These results, obtained on
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triangular grids, match those reported for rectangular grids. A drawback of

the nested dissection method is that vector computers cannot be used to full

advantage because of the shorter vectors generated by this numbering. )

The convergence propertics of Gumimel’s alternating method for the solu-
tion of Poisson’s equation and the continuity equation has been thoroughly
analyzed. The method works exceedingly well for devices biased below
threshold, gencrally requiring less than five iterations. Siinulations of devices
biased above threshold but with very little current flowing also converge
rapidly. Signilicant convergence problems occur, however, for devices biased
in the lincar and saturation regions of operation where substantial currents

are flowing.

Four different methods have been derived in the course of this work for
accelerating the convergence of the alternating method in these operating
regions— projection ol the initial guess from previous solutions, use of only
one Poisson iteration per alternating Heration, overrelaxation of the electros-
tatic potential solutions and reduction of the Poisson linearizing term. The
use of combinations of these technigies reduces the average solution time by
approximately a factor of four. Using these acceleration techniques, as the
drain bias increases the solution timne for MOSIFET drain bins steps is scen to
increase until reaching saturation and then decrecase as the deviee is biased
deeper into saturation. This solution time reduction with increasing bias in
the saturation region is scen only when using these acceleration techniques
and tends to counter claims that the alternating method is not practical for

simulation of devices above threshold.

iven with the acecleration techniques, the convergence above threshold
is still relatively slow. Plots of surface potential error versus location along

the channel show a single sinusoidal variation of the error from source to
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drain. The sinusoid undergoes very slow decaying oscillations in a wave-like
manner as the iterations progress. This first harmonic in spatial {requency
of the surface potential crror appears to be a dominant factor in the slow
convergence of the alternating method above threshold.

Comparisons of the PISCES, GIEMINI and CADDLIT device simulation
programs has shown agreement to within a factor of two in subthreshold
simulations and to within a few percent above threshold. These and other
differences between simulation program solutions can usually be traced to
difference in grid placement, physical assumptions or convergenee tolerance.

A depth dependent mobility model has been implemented in order to
examine its feasibility and to demonstrate the ability of numerical simulation
programs to use more fundamental physical models than the analytical or
empirical models. Simulations using this model have shown reasonable agree-
ment with measurement for mobility variations with gate bias and substrate
doping. This application of device simulation also demonstrates the utility

of such programs in the evaluation of physical models.

6.2 Recommendations

As with most scientific endeavors, there appear to be more guestions at
the end than there were at the start. The PISCES program is extremely
well suited to the studies performed in this work but is unsatisfactory as a
device designers tool.  Several modifications to the program are suggested
with varying degrees of additional rescarch required.

The rectangularly connected triangular grid of PISCIES appears to be a

reasonable compromise in terms of flexibillity in matching deviee structures,
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ease of gencration, and compatibility with matrix equation solution tech-
niques. An automatic grid gencration scheme should be developed for im-
plementing this grid based on the grid density criteria described in this work.
Grid refinement with changing bias should be studied with a consideration
for the tradeoff between the increased accuracy achieved and the possibility
of slight discontinuities in the device characteristics due to the changing grid.

The LU decomposition matrix solution method used in PISCES is not
the optimum method for device simulation and should be replaced. Studies
should be performed on comparisons of the SIP and 1CCG methods as they
appear to be the best suited replacements. Iimplementation of either of these
iterative matrix solution techniques should be accompanied by study of the
effectiveness of fully merging the alternating solution iterations by mixing
the Poisson and continuity equation matrix iterations.

Although the obtuse triangle diseretization is relatively sound and many
apparently successful simulations have been performed with obtuse triangles
in the grid, their effect is not fully understood. Some high resolution contour
plots in regions with large numbers of highly obtuse triangles, for example,
have shown slight distortions in the equipotential contours. Additional re-
search is suggested to quantify these ceffects.

The slow convergence of the alternating method for simulation of devices
above threshold remains a problem in spite of the acceleration achicved in
this work. The significance of the oscillations seen in the surface potential
should be investigated with the possibility of supplementing the Peisson and
continuily equation coupling along the length of the channel.

A more definitive study of the depth dependent mobility model should be
performed in order to determine the proper functional form and parameter

values for the model and its practicality for use in deviee simulation. The
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grid density requirements for implementation of the model should also be
considered. Other poorly understood phenomena such as weak inversion

mobility should also be examined via device simulation.

o
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Appendix A

PISCES DEMONSTRATION EXAMPLE

Parts of the PISCLIS program have been described in the text of this
work; however, sufficient detail for a thorough understanding of the program
functions is not provided. This appendix provides the necessary detail in
the form of an example which demonstrates most of the program features.

The device simulated is an N-channel Silicon MOSFET with the following

parameters:
gate length 1.5 pm
gate oxide 500 A
field oxide 4000 A
junction depth A4 um
substrate doping 2 < 10" em™3
channel implant dose 3.0 101 em™?
fixed interface charge 1< 1019 cm—?
gate material n-type poly~ilicon
source/drain contacts aluminum.

Figures A.1 and A.2 show the input deck for the program. The deck is
divided into two parts to demonstrate the saving and restoring of program
data files. Usually, one would split the deck into several pieces vo that cach
step in the simulation may be verified before proceeding to the next.

The first itein in each line is the card name and the remaining items are
parameters. There are three types of parameters numeric, alphanumerice,
and logical. Numeric paramcters arc followed by an equal sign and a numerice

value. Alphanumerie parameters are also followed by an equal =ign but may
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TITLE MOSFET EXAMPLE
$ *** Generate mesh ***
MESH RECTANGULAR NX=31 NY=22 OQUTFILE=MESH1 BULKDOP=2E15 P.TYPE

X.MESH  NODE=1 LOCATION=1 RATIO=1

X.M N=3 L=1.5 R=.71

X.M N=9 L=1.9 R=.

X.M N=15 L=2.25 R=1.11

X.M N=21 L=2.86 R=.9

X.M N=27 L=3 R=1.25

X.M N=29 L=3.5 R=1.414

X.M N=31 L=4.5 R=1.414

Y.M N=1 L=-.05 R=1

Y. M N=4 L=0 R=1

Y. M N=22 L=3 R=1.25

$ *** Expand field oxide ***

SPREAD  LEFT WIDTH=.5 UPPER=1 LOWER=4 THICKNESS=.4 ENCROACH=1
+ VOL .RAT=.4

SPR RIGHT W=1.5 UP=1 LO=4 THICK=.4 ENCR=1 VOL=.4
$ *** Match junctions ***

SPR LEFT W=.8 UP=4 LO=10 Y=.41 ENCR=.9 GRADING=.7
SPR RIGH W=1.8 UP=4 L0O=10 Y=.41 EN=.9 GR=.7

$§ *** Identify insulator and semiconductor regions ***

REGION NUMBER=1 X.LOW=1 X.HIGH=31 Y.LOW=1 Y. HIGH=4 INSULATOR

REG NUM=2 X.L=1 X.H=31 Y.L=4 Y.H=22 SEMICONDUCTOR
$ *** Dope the semiconductor ***
i $ *x* gubstrate **+
: DOPING P.TYPE CONCENTR=2E15 UNIFORM
$ *** channel implant ***
Dpop P DOSE=3.4t11 Y.PEAK=.18 Y.CHARAC=.2404 GAUSSIAN
$ *¥* source and drain ***
DOP DONOR CONC=4E19 LEFT.JUN Y.JUNC=.4 Y.PEAK=0 GAUSS
+ X.RIGHT=1.5 XY.RATIO=1
pore DONOR CONC=4E19 RIGHT.J Y.J=.4 Y.P=0 GAUSS X.L=3 XY=1
$ *** Fixed surface states ***
QF CONCENTR=1E10 X.LOW=3 X.HIGH=27 Y.LOW=4 Y.HIGH=4

$ *** Identify electrode locations *¥*
ELECTROD NUMBER=1 X.LOW=3 X.HIGH=27 Y.LOW=1 Y .HIGH=1

' ELEC N=2 X.L=1 X.H=31 Y.L=22 Y.H=22
{ ELEC N=3 X.L=1 X.H=2 Y.L=4 Y.H=4
} ELEC N=4 X.L=28 X.H=31 Y.L=4 Y.H=4

$ *** Print vertical grid info ***

PRINT POINTS IX.MIN=15 IX.MAX=15

$ *** Plot grid and junctions ***

FLOT.2D X.MIN=1 X.MAX=4.5 Y ,MIN=-.3 Y.MAX=3 NO.TOP BCUNDARY
+ JUNCTION GRID

$ LE X ] End L X R J

-~

Fig. A.1. Sample PISCLES input card deck for mesh generation and device
structure definition.




TITLE PERFORM SOLUTIONS

$ *** Get mesh ***

MESH IN=MESH1

$§ *** Perform symbolic matrix factorization ***
SYMB OUT=SYMB1

$§ *** Prepare for initial solution ¢**
SETUP INIT PRINT TEMPERAT=300 P.ELECT=2
$ s*¢ specify materials ***

MATERIAL NUMBER=1 OXIDE

MATER NUM=2 SILICON

$ **+ specify contacts ***

CONTAC NUMBER=1 N.POLY

CONTAC NUM=2 NEUTRAL

CONTAC NUM=3 ALUMINUM

CONTAC NUM=4 ALUM

$ *** Specify mobility models *#**
MOBILITY VSAT CONMOB

§ *** Solve initial solution ***

SOoLv PRINT OUT=EXQUTO

§ *** Step gate bias %%+

SETUP INF=EXOUTO PREVIOUS V1=0
SOLVE PRINT

SETUP PROJECT V1=2

SOLVE OUTFILE=EXQUT1 PRINT

$ *** Step drain bias ***

SETUP PREVIOUS V4=.5

SOLVE SINGLE ACCEL OUT=EXQUT2 PRINT
SETUP PROJECT VSTEP=.5 NSTEPS=3 ELEC=4
SOLVE SINGLE ACCEL QUT=EXQUT3 PRINT

$§ *** Plot results at Vg=2, Vd=2 »=**

PLOT.2 X.MIN=1 X.MAX=4.5 Y .MIN=-.,3 Y.MAX=3 BOUND NO.TOP JUNC DEPL
CONTOUR POTENTIAL MIN.VAL=-.2 MAX.VAL=1.6 DEL.VAL=.2

PLOT.2 X.MIN=1 X.MAX=4.5 Y ,MIN=-.3 Y.MAX=3 BOUND NO.TOP JUNC DEPL
CONTO QF .POT MIN=.2 MAX=2 DEL=.2

s LE 2] End LE X J

Fig. A.2. Sample PISCES input card deck for specifying deviee material
characteristics and obtaining simulation solutions.

have any alphanuiaeric character as a value. Logical parameters may be
followed by an cqual sign and the words true or false or may appear alone in
which case they are assigned a logical value of true. A “+” in the first column
indicates a continuation of the previous line. Note that cither card names

or paramcters names may be shortened if the resulting name is unambigions.
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The card and parameter names recognized by the program (8 characters
maximum) are shown in upper case letters with the remainder of the name in
lower case letters for clarity. The remainder of this appendix details the use
of cards and parameters by describing their use in the sample input decks of

Figures A.1 and A.2.

TITLE

The TITLE card has no parameters. All of the characters after the card

name are stored and used as a header for all printed listings.

$ or COMMENT

Either $ or COMMIENT may be used to specify a comment line which

is ignored by the program.

MIZSH

The MESH card indicates the beginning of a sequence of cards serving
to define the device structure. The sequence is terminated when a non-mesh-
defining card is encountered. Most of the cards must appear in the order
given in order to properly define the device. A RECTANGUlar mesh (grid) is
specified meaning that the grid nodes will initially lie at the intersections of
parallel horizontal and vertical lines. Distortion of this grid is allowed later.
There are 31 vertical grid lines (NX) and 22 horizontal grid lines (NY), At
the termination of the mesh scquence, all of the structure data will be stored
in a file (OUTFILE) called MEESH. The substrate doping (BULKDOP) is
2 X 10" cm™ and is p-type (P.TYPE). The substrate may also be specified
as N.TYPL. If a mesh file has been previously stored, all structure data may

be read with the single parameter INFILE and the name of the file.

120




.MESH

The X.MIISH card specifies the location along the z axis of one of the

vertical grid lines. The first NODE (actually all nodes on the first vertical
line) has an z-axis coordinate (LOCATION) of 1 um. The origin of the z axis
may be arbitrarily chosen. The RATIO value has no meaning for the first

node.

The next card is also an X.MI:SII card but the card name and paramcter
names are shortened for ease of typing. All of the cards in this example follow
this same pattern in which full card and paramcter names are used on the
first occurrence of a card type, but shortened names are used thereafter.
The - ond X.MIESH card places node 3 at 1.5 um. The RATIO parameter
specific that the spacing between vertical grid lines 2 and 3 should be only
71 of the spacing between lines 1 and 2. If there were more grid lines specified
in the interval, then cach successive space (from left to right) would be .71
as large as the previous space. The additional X.MESH cards specify the
remaining grid lines, locations and spacing ratios up to the rightmost edee of

the simulation region at 4.5 um.

Y.MESH

The Y.MESI card serves the same function as the X.MISSH card but
in the orthogonal direction. The y axis is positive downward. The [ st
horizontal grid line is placed at the top of the gate oxide. The fourth grid
linc is placed at the oxide-scimiconductor interface and is chosen as the origin.
The Iast grid line is placed at the bottom of the simulation region, 3 gum deep

into the substrate.

121




A

A AT b 1my

PREAD

The SPREAD card is used to distort the grid in the vertical direction
in order to match device surface or interface shapes or other internal device
structure. The operation results in horizontal grid lines which are vertically
displaced on either the left or right side of the device with a smooth variation
of this displacecment across the device. The first two spread cards expand the
oxide region on the LEFT and RIGIHT sides of the device from the gate oxide
thickness to the field oxide THICKNESs of 4000 A. The second two distort
the grid near the semiconductor surface to match the source/drain junction
profiles. The first spread card expands the grid between lines 1 (UPPER)
and 4 (LOWER) specified later as the oxide region, for a WIDTIH of .5 um
from the LEFT edge of the device. The ENCROACHment factor specifies the
abruptness of the transition from spread to non-spread grid. The VOL..RATio
parameter specifies the ratio of the downward displacement of the lower grid
line to the net inerease in thickness, corresponding to the volume ratio of
silicon consumed to oxide grown in thermal oxidation.

In the third and fourth SPREAD cards, the UPPIER grid line, the oxide-
sciiconductor interface, is not moved but the LOWER line is moved to
the Y.LOWER coordinate of .41 gm which is just below the source/drain
junctions. The spacing of all grid lines in between is changed to a GRADING
of .7 in order to provide the proper grid placement on the steep source/drain
impurity profiles.  The GRADING value is used exactly like the RATIO

paramecter in the X.MIEESTH card.

REGION
The REGION card is used Lo define the INSULATOr and SEMICONDuc-

tor regions of the device. It can also be used to rigidly restriet the region of
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the device which receives impurity doping. Each region must be sequentially
numbered using the NUMBER parameter. The X.LOW, X.HIGII, Y.LOW,
and Y.HIGH parameters specify the grid lines which bound the region. In
this typical example, the entire semiconductor substrate is contained in one

region, and the oxide in another.

The DOPING card is used to add impurities to the deviee within the
bounds of the most recent RIZGION card. The first DOPING card specifies
the substrate doping to be a UNIFORM distribution of P.TY P impurity
with a CONCENTRation of 2 X 10!% ¢m™3.

The second DOPING card specifies the channel implant as & GAUSSIAN
implant of a P.TYPE impurity with a2 DOSE of 3.4 X 10" emm~2, a peak
(Y.PEAK) at .18 gm and CHARACTEristic length (V20) of .2401 pm.

The third DOPING card specifies a GAUSSIAN source doping with a
peak CONCENTRation of 4 X 10" ¢m™3 DONOR impurities, with the peak
(Y.PEAK) at the origin and the junction (Y.JUNCTI) at .1 yim computed
using the background doping on the left side (LEIYT.JUN) of the deviee. The
impurity distribution is specified to be uniform in the lateral direction from
the left edge of the device (by default) to the 1.5 gm location on the z-axis
(X.RIGIIT). This point corresponds to the right edge of a diffusion or implant
window. The lateral profile beyond the 1.5 pm coordinate is also Gaussian
(by default) and the characteristic length in the & direction is specified by
XY.RATIO to be equal to the characteristic length in the y direction, resulting
in eylindrical junctions.

The fourth DOPING card specifies the same doping profile for the drain.

Additional parameters allow the impurity type to be specilied as NTYPE or
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ACCEPTOR and permit a complementary error function lateral impurity

profile by specifying X.ERFC.

or

The QF card is used to specify the fixed surface states charge at an

insulator-semiconductor interface. The CONCENTRation is 1 X 10 ¢m~2
and exists along horizontal grid line number 4 (Y.LOW, Y.HIGII) from ver-
tical grid line number 3 (X.LOW) to vertical grid line number 27 (X.HIGH).

ELECTRODe

The ELECTRODe card specifies nodes in the grid at which the potential
boundary conditions will be applied. Each group of nodes is assigned a
NUMDBLER which is used to reference the group. The node clusters are
specified by the bounding grid lines as in the QI' card (X.LOW, X.HIGH,
Y.LOW, Y.HIGH). Electrode number 1 is the gate, 2 is the substrate, 3 is

the source and 4 is the drain.

This is the last mesh-defining card. Reading the next card terminates
the MIESIT sequence and causes a final computation of mesh parameters and

stores the mesh data in the specified output file.

PRINT

The PRINT card provides terminal or line printer listings of a large
variety of simulation information. The information is printed ouly for
arcas of the device within a window. The window may be specified by
providing the grid line boundaries (IX.MIN, IX.MAX, TY.MIN, IY.MAX) or
coordinate boundaries (X.MIN, X.MAX, Y.MIN, Y.MAX). The POINTS

parameter prints data associated with nodes in the grid.  Other allow-
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able PRINT parameters are: ELEMENTS—nodes composing each triangle;
GEOMETRY-—coupling coefficients; SOLUTION —potential, quasi-FERMI
potential and electron concentration at each node; MATERIAL—detail on

the material parameters for each device region.

PLOT.2

The PLOT.2D card makes a two-dimensional plot of specified device
characteristics. The plot window is specified by coordinates (X.MIN, X.MAX,
Y.MIN, Y.MAX), which may lie inside or outside of the simulation region.
The BOUNDARY parameter plots the device external boundary, interfaces
and clectrodes, JUNCTION plots the metallurgical junctions, GRID plots the
triangular grid, and DEPL.EDGe plots the depletion edges. NO.TOP inhibits
the plotting of tic marks across the top of the plot and NO.TIC inhibits all
tic marks. NO.CLEAR inhibits clearing of the display between plots to allow
superimposed plots. A plot file may be generated by specifying OUTFILE
and a file name. The resulting plot is shown in Figure A.3. FFurther plotting

capability is provided by the CONTOUR card to be deseribed lator.

Figure A.2 shows the card sequence which performs the solutions on the
device. In this card sequence, the MESIH card merely reads the file MEESHI

which contains all of the nccessary device structure information.

SYMBOLIC

The SYMBOLIC card invokes the symbolic factorization of the coeflicient
matrix for the LU decomposition. INFFILE and OUTFILIS are used to read
or write the pointer arrays resulting from the factorization. The DISSECT

parameter may be used to perform a nested dissection renumbering on the
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Fig. A.3. Plot of the mesh gencrated by the PISCES example.

grid. Alternatively, MINIMIZEE may be used to renumber the grid by rows
if therc arc fewer nodes across a row than down a column. The PRINT

parameter prints a summary of relevant factorization parameters.

SETUP

The SETUP card computes the coellicient matrix and the initial guess
prior to every solution. It may be followed by a sequence of cards which
specify or modify various device paramelers. The sequence is terminated
when a non-sctup-sequence card is encountered. Since this is the first solution
performed on this device the INITIAL parameter is specified. This reslts in
a charge-neutral initial guess and a [lat-band bias assignment. The PRINT
paramecter invokes a listing of the SETUP parameter values on termination of
the SETUP sequence. The device TEMPERATure is specified to be 300° K.
The P.ELECTRode parameter assigns the substrate bias (clectrode number

2) as the hole quasi-Fermi level value. An alternative way Lo set the hole
{
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quasi-Fermi level is to explicitly specify it with the P.BIAS parameter.

In the second occurrence of the SETUP card (several cards down the list),
the PREVIOUS solution is used as the initial guess for the next solution. The
previous solution is read using INFILE. Actually, reading the solution from
the file was not necessary since the two most recent solutions arc always stored
in memory. INFILE reads a stored solution into the most-receni-solution
array and IN2I'ILE reads into the sccond-most-recent solution array. The
device electrode bias levels are set using V1 through V9 and VTEN where
the number corresponds to the electrode number. Here the gate is set to
zero volts. All electrode voltages not explicitly set are kept at their previous
values.

The third occurrence of the SETUP card demonstrates the use of the

PROJECTion parameter for extrapolating an initial guess from two previous

_solutions. Only one electrode bias is allowed to change between the new and

two previous solutions. Here the gate (electrode 1) has previous values of
flat-band and zero volts and a new value of two volts.

The fourth SETUDP card sets the drain voltage to .5 volts.

The fifth SETUP card demonstrates the bias stepping capability of
PISCES. VSTED sets the bias step size, NSTEPS sets the number of bias
steps, and ELIFCTRODe specifies the electrode number (the drain) being
varicd. When bias steps are specified in this way, only one SETUP/SOLVE
combination is required for the range of bias steps requested.

MATERIAL

The MATERIAL card is used to specify the materials and physical

parameters to be used for the simulation. Material NUMBER 1 corresponding

to region number 1 is OXIDE. Other insulator specifications allowed are 8102,
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NITRIDE, SI3N4, SAPPHIRE, and INSULATOr. The relative permittivity
is appropriately set for each of the insulator parameters except INSULATOr
which requires an explicit PERMITTIvity value. It is optional for the other
specificatons.

The second MATERIAL card assigns SILICON physical paramcters to
region NUMBER 2. Other semiconductor specifications allowed are gallium
arsenide (GAAS) and SEMICONDuctor. A variety of physical parameters
are set by the SILICON or GAAS parameters or may be optionally set, but
they must be explicitly set for the SEMICONDuctor parameter. N1300 and
EG300 are the intrinsic carrier concentration and energy gap at 300K, the
PERMITTItivity and electron AFFINITY may be specified, and TP and TN
are the hole and cleetron minority carrier lifetimes. A constant MOBILITY
and a carrier saturation velocity (VSAT) may also be specified. EGALPTHA
and EGBISTA are terms in the expression for cnergy gap variations with

temperature:

1 (T/300)?
L (T)= FE,(300)+ af ——— — - "— 1.01
o(T) = £,(300) a(1+ﬂ T /300 + B (101)
where IY; is the energy gap, T is the temperature in °I(, o is EGALPHA,

and 8 is LGBETA. Thesc values are related to those of Sze [Al] by a =
300« (Sze) and 8 = B(Sze)/390.

CONTACT

The CONTACT card specifics the type of material used for the device
electrodes. The NUMBER corresponds to the ELIECTRODe number.
Alternatively, ALL may be used to specify with one card that all of the
contacts usc the same material. In the example, the gate is N.POLYSIlicon

and the source and drain are ALUMINUM. Other allowed materials
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are P.POLYSIlicon, MOLYBDENum, and TUNGSTEN, molybdenum dis-
ilicide (MO.DISIL) and tungsten disilicide (TU.DISIL). Alternatively, the
WORKFUNCtion may be provided explicitly. It is very uselul in those situa-
tions where the contact characteristics do not influence device operation to
specify a NEUTRAL contact. This specification guarantees that there will be
no carrier accumulation or depletion at the contact. The substrate contact
in the MOSIET simulation, for example, is specified in this manner since the
simulated substrate contact at the bottom of the simulation region is much

closer to the surface than the actual substrate contact.

MOBILITY

The MOBILITY card is used to specify which of the carrier transport and
recombination models are to be used in the simulation. This capability is used
primarily to aid comparison of PISCES to other device simulation programs
which do not have the models. For normal simulations one would turt on all
of the models. The example specifies that veloeity saturation (VSATURAT)
and impurity concentration dependent mobility (CONMOB) be used in the
sitmulation. The other model parameter allowed is SRURIECONM] for Shockley-
Read-T1all recombination. <ach of these specifications remains in foree until

terminated with a NOVSATUR, NOCONMORB, or NOSRHRIIC ¢pecification.

The MOBILITY card is the last card in the SETUDP sequence. Reading
of the next card causes the initial guess to be generated and all parameters

to be set as specilied.

SOLVE

The SOLVIC card controls the method of solution used in the simulation.

he first SOLVE card in the example specifies that iteration information (bias,
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charge and current at each electrode) be PRINTed and that the solution be
saved in a file called EXOUTO (OUTFILE). The PRINT parameter can be
terminated using NOPRINT.

The fourth SOLVE card spzcifies that the SINGLEPoisson iteration
method be used since significant drain bias is being applied. The default
condition is the MULTIPOisson iteration method. One may also specify
POISSON only iterations in which no continuity equation solutions are per-
formed. The default condition is BOTH where both sets of equations are
solved. The ACCELERAtion parameter specifies that the linearization factor
reduction method of convergence acceleration discussed in the text is to be
used. The default is NOACCELFEration. The alternate acceleration method,
overRELAXation is also available with the default ot NORELAX. There are
four levels of convergence available, COARSLE, MEDIUM, FINE and LIMIT
" with MEDIUM being the default. Each of the first three have succeedingly
tighter convergenee limits. The fourth level, LIMIT, specifies that a number
of iterations equal to ITLIMIT be executed regardless of the level of conver-

gence. Alternatively, the actual iteration convergence tolerances themselves

P.TOLERance and C.TOLERance may be specified.

The fifth SOLVE card demonstrates its use in the bias stepping mode.
No special consideration is required; however, the file name specified by the
OUTFILE parameter will be incremented by one character/digit for cach
bias step. Thus 3 different solution files will be saved for this bias stepping

sequence; EXOUT3, EXOUT4 and EXOUTS.

The PLOT.2D card has been covered carlier with the card zequence of

Figure A.1.
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CONTOUR

The CONTOUR card is used to plot two-dimensional contours of various
device parameters. EquiPOTENTIAI contours are plotted at potential
values of MIN.VALUe to MAX.VALUe with DEL.VALUe steps. Other device
contours which may be plotted are quasi-Fermi potential (QI".POTEN),
DOPING, ELECTRON concentration, HOLIE concentration, net charge
concentration (NET.CHRG) and net carrier con&ntration (NET.CARR).
Logarithmic contour intervals may be specified by LOGARITHm. The values
for MIN.VALUe, MAX.VALUe, and DEL.VALUe¢ are then the logarithms of
the desired values. In order to plot logarithmic intervals of negative values of
NET.CHRG or NET.CARR, the NIEGATIVE parameter must be specified.
The line type to be used in the contour plot may be specified using the
LINE.TYPe¢ parameter and an integer value between one and 11. Figures A.4

and A.5 show the potential and quasi-I'ermi potential contour plots generated

by the CONTOUR cards.

131

o o . BRI~ S o PAP S




Fig. A.4. Equipotential contours generated by the example at Vi = 2V and
Vpbs = 2V.
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Fig. A.5. Quasi-Fermi potential contours generated by the example at Vg =
2V and Vpg = 2V.
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